We demonstrate that the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in graphene can be strongly modified by a time-periodic driving field even in the weak drive regime. This effect is due to the opening of a dynamical band gap at the Dirac points when graphene is exposed to circularly polarized light. Using Keldysh-Floquet Green's functions, we develop a theoretical framework to calculate the time-averaged RKKY coupling under weak periodic drives, and we show that its magnitude in undoped graphene can be decreased controllably by increasing the driving strength, while mostly maintaining its ferromagnetic or antiferromagnetic character. In doped graphene, we find RKKY oscillations with a period that is tunable by the driving field. When a sufficiently strong drive is turned on that brings the Fermi level completely within the dynamically opened gap, the behavior of the RKKY coupling changes qualitatively from that of doped to undoped irradiated graphene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.