Sulphur dioxide is one of the most common air pollutants, forming acid rain and other harmful substances in the atmosphere, which can further damage our ecosystem and cause respiratory diseases in humans. Therefore, it is essential to monitor the concentration of sulphur dioxide produced in industrial processes in real-time to predict the concentration of sulphur dioxide emissions in the next few hours or days and to control them in advance. To address this problem, we propose an AR-LSTM analytical forecasting model based on ARIMA and LSTM. Based on the sensor’s time series data set, we preprocess the data set and then carry out the modeling and analysis work. We analyze and predict the proposed analysis and prediction model in two data sets and conduct comparative experiments with other comparison models based on the three evaluation indicators of R 2 , RMSE and MAE. The results demonstrated the effectiveness of the AR-LSTM analytical prediction model; Finally, a forecasting exercise was carried out for emissions in the coming weeks using our proposed AR-LSTM analytical forecasting model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.