With the increasing emphasis on security and privacy, video in the cloud sometimes needs to be stored and processed in an encrypted format. To facilitate the indexing and tampering detection of encrypted videos, data hiding is performed in encrypted videos. This paper proposes a novel separable scheme for encryption and reversible data hiding. In terms of encryption method, intra-prediction mode and motion vector difference are encrypted by XOR encryption, and quantized discrete cosine transform block is permutated based on logistic chaotic mapping. In terms of the reversible data hiding algorithm, difference expansion is applied in encrypted video for the first time in this paper. The encryption method and the data hiding algorithm are separable, and the embedded information can be accurately extracted in both encrypted video bitstream and decrypted video bitstream. The experimental results show that the proposed encryption method can resist sketch attack and has higher security than other schemes, keeping the bit rate unchanged. The embedding algorithm used in the proposed scheme can provide higher capacity in the video with lower quantization parameter and good visual quality of the labeled decrypted video, maintaining low bit rate variation. The video encryption and the reversible data hiding are separable and the scheme can be applied in more scenarios.
For easier cloud management, reversible data hiding is performed in an encrypted domain to embed label information. However, the existing schemes are not robust and may cause the loss of label information during transmission. Enhancing robustness while maintaining reversibility in data hiding is a challenge. In this paper, a multi-domain embedding framework in encrypted videos is proposed to achieve both robustness and reversibility. In the framework, the multi-domain characteristic of encrypted video is fully used. The element for robust embedding is encrypted through Logistic chaotic scrambling, which is marked as element-Ⅰ. To further improve robustness, the label information will be encoded with the Bose–Chaudhuri–Hocquenghem code. Then, the label information will be robustly embedded into element-Ⅰ by modulating the amplitude of element-Ⅰ, in which the auxiliary information is generated for lossless recovery of the element-Ⅰ. The element for reversible embedding is marked as element-II, the sign of which will be encrypted by stream cipher. The auxiliary information will be reversibly embedded into element-Ⅱ through traditional histogram shifting. To verity the feasibility of the framework, an anti-recompression RDH-EV based on the framework is proposed. The experimental results show that the proposed scheme outperforms the current representative ones in terms of robustness, while achieving reversibility. In the proposed scheme, video encryption and data hiding are commutative and the original video bitstream can be recovered fully. These demonstrate the feasibility of the multi-domain embedding framework in encrypted videos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.