Designing multistimuli responsive soft actuators which can mimic advanced and sophisticated biological movements through simple configuration is highly demanded for the biomimetic robotics application. Here, inspired by the human's flick finger behavior which can release large force output, a soft jumping robot mimicking the gymnast's somersault is designed based on the rolled carbon nanotube/polymer bilayer composite actuator. This new type of rolled bilayer actuator with tubular shape is fabricated and shows electrically and sunlight‐induced actuation with remarkable performances including ultralarge deformation from tubular to flat (angel change >200° or curvature >2 cm−1), fast response (<5 s), and low actuation voltage (≤10 V). Besides jumping, the uniquely reversible rolling–unrolling actuation can lead to other smart soft robots with versatile complex biomimetic motions, including light‐induced tumbler with cyclic wobbling, electrically/light‐induced crawling‐type walking robots and grippers, electrically induced mouth movement, and ambient‐sunlight‐induced blooming of a biomimetic flower. These results open the way for using one simple type of actuator structure for the construction of various soft robots and devices toward practical biomimetic applications.
A multi-functional wearable sensor mimicking human skin is constructed based on an asymmetric graphene composite film, showing sensing and light-induced actuation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.