In the Galaxy, close binaries with compact objects are important low-frequency gravitational wave (GW) sources. As potential low-frequency GW sources, neutron star/white dwarf (WD) ultracompact X-ray binaries (UCXBs) have been investigated extensively. Using the Modules for Experiments in Stellar Astrophysics code, we systematically explored the evolution of black hole (BH)-main-sequence star (MS) binaries to determine whether their descendants can be detected by space-borne GW detectors. Our simulations showed that BH-MS binaries with an initial orbital period less than the bifurcation period can evolve into BH UCXBs that can be detected by LISA. Such an evolutionary channel would form compact mass-transferring BH-WD systems rather than detached BH-WD systems. The calculated X-ray luminosities of BH UCXBs that can be detected by LISA at a distance d = 1 kpc are ∼1033–1035 erg s−1 (∼1034–1035 erg s−1 for d = 10 kpc); hence, it is possible to detect their electromagnetic counterparts. It is worth emphasizing that only some BH-MS systems with an initial orbital period very close to the bifurcation period can evolve toward low-frequency GW sources whose chirp masses can be measured. The maximum GW frequency of BH UCXBs forming via the BH-MS pathway is about 3 mHz, which is smaller than the minimum GW frequency (6.4 mHz) of mass-transferring BH-WDs originating from a dynamic process. Furthermore, we obtain an initial parameter space (donor-star masses and orbital periods) of progenitors of BH UCXB-GW sources, which can be applied to future population synthesis simulations. By a rough estimation, we predict that LISA would only be able to detect a few BH UCXB-GW sources formed by the BH-MS channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.