Cross-modal food retrieval is an important task to perform analysis of food-related information, such as food images and cooking recipes. The goal is to learn an embedding of images and recipes in a common feature space, so that precise matching can be realized. Compared with existing cross-modal retrieval approaches, two major challenges in this specific problem are: 1) the large intra-class variance across cross-modal food data; and 2) the difficulties in obtaining discriminative recipe representations. To address these problems, we propose Semantic-Consistent and Attention-based Networks (SCAN), which regularize the embeddings of the two modalities by aligning output semantic probabilities. In addition, we exploit self-attention mechanism to improve the embedding of recipes. We evaluate the performance of the proposed method on the largescale Recipe1M dataset, and the result shows that it outperforms the state-of-the-art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.