A novel, rapid, and simple capillary electrophoresis (CE) method has been developed for the determination of antimalarial artemisinin by on-line treatment with alkaline. By on-line reaction, artemisinin was automatically and reproducibly converted to the strongly UV-absorbing compound, Q292, by treating it with 0.20 mol/L NaOH solution for 3 min at 40 degrees C. Analysis was carried out in less than 12 min after conversion of artemisinin in a flow injection (FI) system that was coupled to CE equipment via a split-flow interface cell, and a sampling frequency of 8 h(-1) is achievable. The on-line conversion method has been applied to the determination of artemisinin in the traditional Chinese herbal drug Artemisia annua L., and the results are satisfactory.
The reaction mechanisms of palladium-catalyzed divergent reactions of 1,6-enyne carbonates have been investigated using DFT calculations at the B3LYP/6-31G(d,p) (LanL2DZ for Pd) level. Solvent effects on these reactions have been considered by the polarizable continuum model (PCM) for the solvent (DMF). The formation of vinylidenepyridines and vinylidenepyrrolidines were generated through 5-exo-dig cyclization or 6-endo-dig cyclization. Our calculation results suggested the following: (i) The first step of the whole cycle is the rate-determining step, which causes allenic palladium intermediate through two plausible pathways. This intermediate provides the corresponding products and releases the palladium catalyst by a subsequent hydrogen transfer and elimination process. (ii) For the catalyst CH 3 OPdH, the reaction could occur through two possible pathways, but 5-exo-dig cyclization is favoured over 6-endo-dig cyclization. However, when the hydrogen atom is substituted with a phenyl group, the energy barriers for 5-exo-dig cyclization or 6-endo-dig cyclization become relatively high, 18.0-28.5 kcal/mol. The computational results provide good explanation for the experimental observations.
The mechanism of palladium(II)-catalysed carboxylation of acetanilide with CO has been investigated using density functional theory calculation done at the B3LYP/6-31G(d, p)(SDD for Pd) level of theory. Solvent effects on these reactions have been explored by calculation that included a polarizable continuum model (PCM) for the solvent. Two plausible pathways which led to the formation of anhydride or benzoxazinone intermediate structure were proposed. Our calculated results suggested that the steps of forming the anhydride or benzoxazinone intermediate became the rate-determining one in the whole catalytic cycle. The process of forming benzoxazinone is more favoured kinetically with a barrier of 16.6 kcal/mol versus 22.9 kcal/mol for the pathway of forming anhydride structure. Subsequent hydrolysis process of these intermediates then provide the corresponding product ortho-acetaminobenzoic acid. The computational results are consistent with the experimental observations of Yu et al. for palladium(II)-catalysed synthesis of acetanilide based on carbon monoxide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.