The mechanisms of the palladium-catalyzed hydrothiolation of alkynes with thiols were investigated using density functional theory at the B3LYP/6-31G(d, p) (SDD for Pd) level. Solvent effects on these reactions were explored using the polarizable continuum model (PCM) for the solvent tetrahydrofuran (THF). Markovnikov-type vinyl sulfides or cis-configured anti-Markovnikov-type products were formed by three possible pathways. Our calculation results suggested the following: (1) the first step of the cycle is a proton-transfer process from thiols onto the palladium atom to form a palladium-thiolate intermediate. The palladium-thiolate species is attacked on alkynes to obtain an elimination product, liberating the catalyst. (2) The higher activation energies for the alkyne into the palladium-thiolate bond indicate that this step is the rate-determining step. The Markovnikov-type vinyl sulfide product is favored. However, for the aromatic alkyne, the cis-configured anti-Markovnikov-type product is favored. (3) The activation energy would reduce when thiols are substituted with an aromatic group. Our calculated results are consistent with the experimental observations of Frech and colleagues for the palladium-catalyzed hydrothiolation of alkynes to thiols.
A theoretical investigation of the [3?2] cycloaddition reaction of the NHC-boryl azide with alkynes and nitriles has been presented by using the DFT (B3LYP) method. Solvent effects on these reactions have been explored by calculation that included a polarizable continuum model (PCM) for the solvent (C 6 H 6 ). The title reaction could produce two different five-membered products (1,4-regioisomer and 1,5-regioisomer). The reaction pathway involves a one-step mechanism through a [3?2] addition where two nitrogen atoms of the N-heterocyclic carbene boryl azide adds to the C:A (A=C or N) bond to form two new C-N or N-N bonds. For alkynes, the reactions can take place more easily to give 1,4-regioisomer product, while the reactions proceed for nitriles along the 1,5-regioisomer pathway. The reaction systems have high chemical reactivity with low barriers and could be favored. The calculations indicated that the cycloaddition reaction of alkynes and nitriles has the better regioselectivity. Our computational results are good consistent with the experimental observations of Merling and co-workers for [3?2]-dipolar cycloaddition reaction of N-heterocyclic carbene boryl azide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.