CeO2 rods with {110} facets and cubes with {100} facets were utilized as catalyst supports to probe the effect of crystallographic facets on the nickel species and the structure-dependent catalytic performance. Various analysis methods (ex and in situ XRD, TEM, Raman, XPS, TPR, TPD) were used to investigate the structural forms of the catalysts, and these results indicated that the deposition of nickel species resulted in the formation of two main active types of the catalyst components: NiO strongly or weakly interacted with the surface and Ni-Ce-O solid solution. Notably, the states and distribution ratio of nickel species were related to the shape of CeO2. It was found that CeO2 rods had more active sites to coordinate with nickel species to form a strong interaction with NiO on the surface and a more stable construction when compared to cubes. Furthermore, the nickel-ceria catalysts with rod shape were more active towards NO oxidation with complete conversion below 191 °C, but for cube shape, complete conversion occurred above 229 °C (e.g., for nickel loading of ∼5%, the complete conversion temperature was 154 °C for the rod shape and 229 °C for the cube shape). On the basis of the analysis of the catalysts structure, the superior catalytic activity was due to a combination of surface structures of NiO (mainly strongly interacting with the surface) and nickel ions Ni(2+) in the Ni-Ce-O bulk phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.