Multiple sclerosis (MS) is a chronic neurological disorder that affects the central nervous system (CNS), and results in CNS inflammation and damage to myelin. In this study, we examined the possible synergistic effects of C16, angiopoietin-1 (Ang-1) and regeneration gene protein 2 (Reg-2) in alleviating inflammation in an acute experimental autoimmune encephalomyelitis (EAE) model. We employed multiple histological, morphological and iconographic assays to examine the effect of those drugs on disease onset, clinical scores and behavioral deficits. Our results demonstrated that triple combination therapy was more efficient than the monotherapy in EAE treatment. The triple therapy significantly delayed the onset of motor symptoms, reduced disease severity, attenuated inflammatory cell infiltration and suppressed the secretion of proinflammatory cytokines. Additionally, treatment increased anti-inflammatory cytokines expression, inhibited reactive astrocytes proliferation, reduced demyelination and axonal loss, and finally reduced the neural death. Specifically, Reg-2 administration rescued oligodendrocytes and neuronal axons mainly by direct neurotrophic effects, while C16+Ang-1 (C+A) mainly improved the inflammatory milieu. In conclusion, our study suggests a possible synergistic effect through targeting a variety of pathways in relieving the clinical symptoms of inflammation in acute EAE model. Therefore, using molecules that target different molecular pathways can be beneficial for exploring novel therapeutic approaches for MS treatment.
Airy beams have provided exciting inspiration in the field of optical communication, particle manipulation, and imaging. We investigate the propagation properties of the exponential truncation Airy beams (ETABs) on constant Gaussian curvature surfaces (CGCSs) in this paper. The analytical expression of the electric field of ETABs propagating on the CGCSs is derived. It shows that the equivalent periodical accelerations of the trajectories of ETABs on the curved surface are always larger than the constant one on the flat surface because the CGCSs have a strong focusing ability. For the same reason, the non-diffraction propagation of ETABs is found when the focusing ability of the CGCSs is strong enough. Moreover, we investigate the self-healing length of ETABs on CGCSs and explore that the ability of self-healing is related to the geometry of CGCSs besides the width of the block and the size of the beam. The self-healing length gets larger with the increase of radius of CGCSs and finally consists with that on the flat surface. These propagation characteristics are different from those in the flat space and are useful for the future applications of ETABs in particle manipulation on waveguides, light-sheet fluorescence microscopy, curved nanophotonics, and so on.
In this paper, an analytical expression of Airy beams near a black hole is derived by general relativity concepts. This paper demonstrates the self‐acceleration and the self‐healing properties of Airy beams near a black hole with different Schwarzschild radii. It shows, during transmission, that the equivalent acceleration near a black hole decreases to a minimum negative value, then increases and eventually approaches zero. After propagating a certain distance, the trajectories of Airy beams approaching a black hole may no longer travel along parabolas, but rather almost straight lines due to the existence of the strong gravitational field. The shapes of the wave structure of Airy beams remain unvarying during the transmission, which indicates that the nondiffraction characteristic is still present. Moreover, the self‐healing property of Airy beams near a black hole gradually disappears with the increase of the strength of the gravitational field, because the energy flow to the major lobe is prevented by the gravitational field of the black hole. These intriguing features may open new prospects in the fields of nanophotonic optics, relativistic effects, transformation optics, and so on.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.