This special issue focuses on the historical development, state-of-the-art, and future outlook of wireless power technology, transmission, and applications.
We have developed a novel method for random noise attenuation in seismic data by applying regularized nonstationary autoregression (RNA) in the frequency-space ([Formula: see text]) domain. The method adaptively predicts the signal with spatial changes in dip or amplitude using [Formula: see text] RNA. The key idea is to overcome the assumption of linearity and stationarity of the signal in conventional [Formula: see text] domain prediction technique. The conventional [Formula: see text] domain prediction technique uses short temporal and spatial analysis windows to cope with the nonstationary of the seismic data. The new method does not require windowing strategies in spatial direction. We implement the algorithm by an iterated scheme using the conjugate-gradient method. We constrain the coefficients of nonstationary autoregression (NA) to be smooth along space and frequency in the [Formula: see text] domain. The shaping regularization in least-square inversion controls the smoothness of the coefficients of [Formula: see text] RNA. There are two key parameters in the proposed method: filter length and radius of shaping operator. Tests on synthetic and field data examples showed that, compared with [Formula: see text] domain and time-space domain prediction methods, [Formula: see text] RNA can be more effective in suppressing random noise and preserving the signals, especially for complex geological structure.
The massive usage of electronic and telecommunication devices have led to serious concerns regarding undesired electromagnetic pollution. While metals such as silver, aluminum and copper are the mostly used materials...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.