Abstract-This paper studies the problem of automatic detection of false rumors on Sina Weibo, the popular Chinese microblogging social network. Traditional feature-based approaches extract features from the false rumor message, its author, as well as the statistics of its responses to form a flat feature vector. This ignores the propagation structure of the messages and has not achieved very good results. We propose a graph-kernel based hybrid SVM classifier which captures the high-order propagation patterns in addition to semantic features such as topics and sentiments. The new model achieves a classification accuracy of 91.3% on randomly selected Weibo dataset, significantly higher than state-of-the-art approaches. Moreover, our approach can be applied at the early stage of rumor propagation and is 88% confident in detecting an average false rumor just 24 hours after the initial broadcast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.