Strontium titanate (STO) is an n-type oxide thermoelectric material, which has shown great prospects in recent years. The doping of La and Nb into STO can improve its power factor, whereas its thermal conductivity is still very high. Thus, in order to obtain a high thermoelectric figure-of-merit zT , it is very important to reduce its thermal conductivity. In this paper, using a combination of a hydrothermal method and a high-efficiency sintering method, we succeed in preparing a composite of pure STO and LaNb-doped STO, which simultaneously realizes lower thermal conductivity and higher Seebeck coefficient, therefore, the thermoelectric properties of STO are significantly improved. In the SrTiO 3 /LaNb-SrTiO 3 bulk samples, the lowest thermal conductivity is 2.57 W•m −1 •K −1 and the highest zT is 0.35 at 1000 K for the STO/La10Nb20-STO sample.
Strontium titanate ([Formula: see text] has the advantages of being non-toxic, environmentally friendly and high-temperature stable, and has potential application in waste heat power generation at medium and high temperature. To explore the impact of TiO2 on the thermoelectric properties of SrTiO3, we synthesized TiO2/La10Nbb10-STO composite powders by hydrothermal method using precursor solution of 10[Formula: see text]mol.% La and 10[Formula: see text]mol.% Nb co-doped STO (La10Nb10-STO) containing TiO2 nanopowders with different molar ratio. After cold pressing and sintering, composite bulk materials were obtained, and their microstructure and thermoelectric transport properties were analyzed. With the increasing TiO2, although the thermal conductivity of TiO2/La10Nb10-STO composite decreased and the Seebeck coefficient increased, the minimum thermal conductivity and the maximum Seebeck coefficient were 2.54[Formula: see text][Formula: see text][Formula: see text] and 215[Formula: see text][Formula: see text]V[Formula: see text][Formula: see text], respectively, at 1000[Formula: see text]K, but the power factor decreased at high temperature due to the apparent decrease of electrical conductivity, resulting in the ZT values being lower than that of La0Nb10-STO without TiO2 addition at high temperature. Significantly, the addition of TiO2 can improve the thermoelectric performance of strontium titanate at low temperature. This approach is expected to improve the ZT of SrTiO3-based thermoelectric material through additional controlling of electrical conductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.