2D lamellar materials can offer high surface area and abundant reactive sites, thus showing an appealing prospect in photocatalytic hydrogen evolution. However, it is still difficult to build cost‐efficient photocatalytic hydrogen evolution systems based on 2D materials. Herein, an in situ growth method is employed to build 2D/2D heterojunctions, with which 2D Ni‐based metal–organic layers (Ni‐MOLs) are closely grown on 2D porous CdS (P‐CdS) nanosheets, affording traditional P‐CdS/Ni‐MOL heterojunction materials. Impressively, the optimized P‐CdS/Ni‐MOL catalyst exhibits superior photocatalytic hydrogen evolution performance, with an H2 yield of 29.81 mmol g−1 h−1. This value is 7 and 2981 times higher than that of P‐CdS and Ni‐MOLs, respectively, and comparable to those of reported state of the art catalysts. Photocatalytic mechanism studies reveal that the enhanced photocatalytic performance can be attributed to the 2D/2D intimate interface between P‐CdS and Ni‐MOLs, which facilitates the fast charge carriers’ separation and transfer. This work provides a strategy to develop 2D MOL‐based photocatalysts for sustainable energy conversion.
Comprehensive SummaryThe creation of effective and inexpensive catalysts is essential for photocatalytic CO2 reduction. Homogeneous molecular catalysts, possessing definite crystal structures, are desirable to study the relationship between catalytic performance and coordination microenvironment around catalytic center. In this report, we elaborately developed three Co(II)‐based molecular catalysts with different coordination microenvironments for CO2 reduction, which named with [CoN3O]ClO4, [CoN4]ClO4, and [CoN3S]ClO4, respectively. The optimal [CoN3O]ClO4 photocatalyst has a maximum TON of 5652 in photocatalytic reduced CO2 reduction, which is 1.28 and 1.65 times greater than [CoN4]ClO4 and [CoN3S]ClO4, respectively. The high electronegativity of oxygen in L1 (N,N‐Bis(2‐pyridylmethyl)‐N‐(2‐hydroxybenzyl)amine) provides the Co(II) catalytic centers with low reduction potentials and a more stable *COOH intermediate, which facilitates the CO2 to CO conversion and accounts for the high photocatalytic activity of [CoN3O]ClO4. This work provides researchers new insights in development of catalysts for photocatalytic CO2 reduction.This article is protected by copyright. All rights reserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.