The currently applied disinfection methods during water treatment provide effective solutions to kill pathogens, but also generate harmful byproducts, which are required to be treated with additional efforts. In this work, an alternative and safer water disinfection system consisting of silver nanoparticle/multiwalled carbon nanotubes (Ag/MWNTs) coated on a polyacrylonitrile (PAN) hollow fiber membrane, Ag/MWNTs/PAN, has been developed. Silver nanoparticles of controlled sizes were coated on polyethylene glycol-grafted MWNTs. Ag/MWNTs were then covalently coated on the external surface of a chemically modified PAN hollow fiber membrane to act as a disinfection barrier. A continuous filtration test using E. coli containing feedwater was conducted for the pristine PAN and Ag/MWNTs/PAN composite membranes. The Ag/MWNT coating significantly enhanced the antimicrobial activities and antifouling properties of the membrane against E. coli. Under the continuous filtration mode using E. coli feedwater, the relative flux drop over Ag/MWNTs/PAN was 6%, which was significantly lower than that over the pristine PAN (55%) at 20 h of filtration. The presence of the Ag/MWNT disinfection layer effectively inhibited the growth of bacteria in the filtration module and prevented the formation of biofilm on the surface of the membrane. Such distinctive antimicrobial properties of the composite membrane is attributed to the proper dispersion of silver nanoparticles on the external surface of the membrane, leading to direct contact with bacterium cells.
Despite unique and useful properties of multi-walled carbon nanotubes (MWNTs) such as high strength and a low synthesis cost, their weak antimicrobial property hampers their use as an antimicrobial material. Herein, we demonstrate that the immobilization of nisin, a natural and inexpensive antimicrobial peptide, with poly(ethylene glycol) (PEG(1000)) as a linker significantly enhanced the antimicrobial and anti-biofilm properties of MWNTs. The MWNT-nisin composite showed up to 7-fold higher antimicrobial property than pristine MWNTs against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis. Moreover, the MWNT-nisin composite had a dramatically improved capability to prevent biofilm formation both on a deposited film and in suspension. In particular, the MWNT-nisin deposit film exhibited a 100-fold higher anti-biofilm property than the MWNT deposit film. Further, it has been shown that PEG and nisin are covalently attached to MWNTs with excellent stability against leaching. We envision that our novel MWNT-nisin composite can serve as an effective and economical antimicrobial material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.