The temperature and strain rate significantly affect the ballistic performance of UHMWPE, but the deformation of UHMWPE under thermo-mechanical coupling has been rarely studied. To investigate the influences of the temperature and the strain rate on the mechanical properties of UHMWPE, a Split Hopkinson Pressure Bar (SHPB) apparatus was used to conduct uniaxial compression experiments on UHMWPE. The stress–strain curves of UHMWPE were obtained at temperatures of 20–100 °C and strain rates of 1300–4300 s−1. Based on the experimental results, the UHMWPE belongs to viscoelastic–plastic material, and a hardening effect occurs once UHMWPE enters the plastic zone. By comparing the stress–strain curves at different temperatures and strain rates, it was found that UHMWPE exhibits strain rate strengthening and temperature softening effects. By modifying the Sherwood–Frost model, a constitutive model was established to describe the dynamic mechanical properties of UHMWPE at different temperatures. The results calculated using the constitutive model were in good agreement with the experimental data. This study provides a reference for the design of UHMWPE as a ballistic-resistant material.
The mechanical properties of polyethylene (PE) materials are greatly influenced by their molecular structures, environmental temperature, and strain rate. In this study, static and dynamic compression tests were performed on two semicrystalline PE materials—ultrahigh molecular weight polyethylene (UHMWPE) and high-density polyethylene (HDPE). The stress–strain curves of HDPE and UHMWPE under uniaxial compression at temperatures of −40–120 °C and strain rates of 0.001–5500 s−1 were obtained. The research findings suggest that both the UHMWPE and HDPE showed significant strain rate-strengthening effect and temperature-softening effect. In particular, HDPE exhibited better compression resistance and high-temperature resistance. The relationships between the yield stress and temperature and between the yield stress and strain rate for both materials were fitted, and the Cowper–Symonds constitutive model was built while considering the temperature effect. The parameters of the constitutive model were obtained and input into LS-DYNA software to simulate the dynamic compression process of HDPE. The simulation result was consistent with the test result, validating the accuracy of the constitutive parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.