Pneumonia is a life-threatening infectious disease affecting one or both lungs in humans. There are mainly two types of pneumonia: bacterial and viral. Likewise, patients with coronavirus can develop symptoms that belong to the common flu, pneumonia, and other respiratory diseases. Chest X-rays are the common method used to diagnose coronavirus pneumonia and it needs a medical expert to evaluate the result of X-ray. Furthermore, DL has garnered great attention among researchers in recent years in a variety of application domains such as medical image processing, computer vision, bioinformatics, and many others. In this paper, we present a comparison of Deep Convolutional Neural Networks models for automatically binary classification query chest X-ray & CT images dataset with the goal of taking precision tools to health professionals based on fined recent versions of ResNet50, InceptionV3, and VGGNet. The experiments were conducted using a chest X-ray & CT open dataset of 5856 images and confusion matrices are used to evaluate model performances.
Brain tumor is a severe cancer disease caused by uncontrollable and abnormal partitioning of cells. Timely disease detection and treatment plans lead to the increased life expectancy of patients. Automated detection and classification of brain tumor are a more challenging process which is based on the clinician’s knowledge and experience. For this fact, one of the most practical and important techniques is to use deep learning. Recent progress in the fields of deep learning has helped the clinician’s in medical imaging for medical diagnosis of brain tumor. In this paper, we present a comparison of Deep Convolutional Neural Network models for automatically binary classification query MRI images dataset with the goal of taking precision tools to health professionals based on fined recent versions of DenseNet, Xception, NASNet-A, and VGGNet. The experiments were conducted using an MRI open dataset of 3,762 images. Other performance measures used in the study are the area under precision, recall, and specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.