Objective. Adequate upper esophageal sphincter (UES) opening is essential during swallowing to enable clearance of material into the digestive system, and videofluoroscopy (VF) is the most commonly deployed instrumental examination for assessment of UES opening. High-resolution cervical auscultation (HRCA) has been shown to be an effective, portable and cost-efficient screening tool for dysphagia with strong capabilities in non-invasively and accurately approximating manual measurements of VF images. In this study, we aimed to examine whether the HRCA signals are correlated to the manually measured anterior–posterior (AP) distension of maximal UES opening from VF recordings, under the hypothesis that they would be strongly associated. Approach. We developed a standardized method to spatially measure the AP distension of maximal UES opening in 203 swallows VF recording from 27 patients referred for VF due to suspected dysphagia. Statistical analysis was conducted to compare the manually measured AP distension of maximal UES opening from lateral plane VF images and features extracted from two sets of HRCA signal segments: whole swallow segments and segments excluding all events other than the duration of UES is opening. Main results. HRCA signal features were significantly associated with the normalized AP distension of the maximal UES opening in the longer whole swallowing segments and the association became much stronger when analysis was performed solely during the duration of UES opening. Significance. This preliminary feasibility study demonstrated the potential value of HRCA signals features in approximating the objective measurements of maximal UES AP distension and paves the way of developing HRCA to non-invasively and accurately predict human spatial measurement of VF kinematic events.
Background Upper esophageal sphincter opening (UESO), and laryngeal vestibule closure (LVC) are two essential kinematic events whose timings are crucial for adequate bolus clearance and airway protection during swallowing. Their temporal characteristics can be quantified through time‐consuming analysis of videofluoroscopic swallow studies (VFSS). Objectives We sought to establish a model to predict the odds of penetration or aspiration during swallowing based on 15 temporal factors of UES and laryngeal vestibule kinematics. Methods Manual temporal measurements and ratings of penetration and aspiration were conducted on a videofluoroscopic dataset of 408 swallows from 99 patients. A generalized estimating equation model was deployed to analyze association between individual factors and the risk of penetration or aspiration. Results The results indicated that the latencies of laryngeal vestibular events and the time lapse between UESO onset and LVC were highly related to penetration or aspiration. The predictive model incorporating patient demographics and bolus presentation showed that delayed LVC by 0.1 s or delayed LVO by 1% of the swallow duration (average 0.018 s) was associated with a 17.19% and 2.68% increase in odds of airway invasion, respectively. Conclusion This predictive model provides insight into kinematic factors that underscore the interaction between the intricate timing of laryngeal kinematics and airway protection. Recent investigation in automatic noninvasive or videofluoroscopic detection of laryngeal kinematics would provide clinicians access to objective measurements not commonly quantified in VFSS. Consequently, the temporal and sequential understanding of these kinematics may interpret such measurements to an estimation of the risk of aspiration or penetration which would give rise to rapid computer‐assisted dysphagia diagnosis. Level of Evidence 2 Laryngoscope, 133:521–527, 2023
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.