Faba bean (Vicia faba L.), a member of the Fabaceae family, is one of the important food legumes cultivated in cool temperate regions. It holds great importance for human consumption and livestock feed because of its high protein content, dietary fibre, and nutritional value. Major faba bean breeding challenges include its mixed breeding system, unknown wild progenitor, and genome size of ~13 Gb, which is the largest among diploid field crops. The key breeding objectives in faba bean include improved resistance to biotic and abiotic stress and enhanced seed quality traits. Regarding quality traits, major progress on reduction of vicine‐convicine and seed coat tannins, the main anti‐nutritional factors limiting faba bean seed usage, have been recently achieved through gene discovery. Genomic resources are relatively less advanced compared with other grain legume species, but significant improvements are underway due to a recent increase in research activities. A number of bi‐parental populations have been constructed and mapped for targeted traits in the last decade. Faba bean now benefits from saturated synteny‐based genetic maps, along with next‐generation sequencing and high‐throughput genotyping technologies that are paving the way for marker‐assisted selection. Developing a reference genome, and ultimately a pan‐genome, will provide a foundational resource for molecular breeding. In this review, we cover the recent development and deployment of genomic tools for faba bean breeding.
Faba bean is a cool-season grain legume crop, which is grown worldwide for food and feed. Despite a decrease in area under faba bean in the past, the interest in growing faba bean is increasing globally due to its high seed protein content and its excellent ecological service. The crop is, however, exposed to diverse biotic and abiotic stresses causing unstable, low grain yield. Although, sources of resistance to main diseases, such as ascochyta blight (Ascochyta fabae Speg.), rust (Uromyces viciae-fabae (Pers.) Schroet.), chocolate spot (Botrytis fabae Sard.) and gall disease (Physioderma viciae), have been identified, their resistance is only partial and cannot prevent grain yield losses without agronomical practices. Tightly associated DNA markers for host plant resistance genes are needed to enhance the level of resistance. Less progress has been made for abiotic stresses. Different breeding methods are proposed, but until now line breeding, based on the pedigree method, is the dominant practice in breeding programs. Nonetheless, the low seed multiplication coefficient and the requirement for growing under insect-proof enclosures to avoid outcrossing hampers breeding, along with the lack of tools such as double haploid system and cytoplasmic male sterility. This reduces breeding population size and speed of breeding hence the chances of capturing rare combinations of favorable alleles. Availability and use of the DNA markers such as vicine-convicine (vc−) and herbicide tolerance in breeding programs have encouraged breeders and given confidence in marker assisted selection. Closely linked QTL for several biotic and abiotic stress tolerance are available and their verification and conversion in breeder friendly platform will enhance the selection process. Recently, genomic selection and speed breeding techniques together with genomics have come within reach to accelerate the genetic gains in faba bean. Advancements in genomic resources with other breeding tools, methods and platforms will enable to accelerate the breeding process for enhancing genetic gain in this species.
Faba bean (Vicia faba L.) is an important cool-season legume crop that ranks fourth after chickpea (Cicer arietinum L.), field pea (Pisum sativum L.) and lentil (Lens culinaris L.) in terms of total production. The global production of faba bean was 4.8 Mt in 2017, with China, Ethiopia and Australia being the largest producers (1.8, 0.93 and 0.37 Mt, respectively). However, its area of production is not increasing relative to other crops, mainly because of high yield instability. This can be attributed to several factors related to plant traits (e.g. phenology, morpho-physiology) and biotic and abiotic stresses. Faba bean has a very poor flower:pod ratio, with a maximum 20% of flowers resulting in pods. Environmental stresses such as frost, heat and drought cause significant damage to flowers and young pods; therefore, matching phenology of crops to the environment is important for avoiding or minimising detrimental effects of unfavourable environmental conditions. In order to improve adaptation and yield, we need to understand the main factors affecting plant growth, including biotic stresses, identify the main yield components, and find traits associated with tolerance to frost, heat and drought.
Background Yellow lupin ( Lupinus luteus L.) is a promising grain legume for productive and sustainable crop rotations. It has the advantages of high tolerance to soil acidity and excellent seed quality, but its current yield potential is poor, especially in low rainfall environments. Key adaptation traits such as phenology and enhanced stress tolerance are often complex and controlled by several genes. Genomic-enabled technologies may help to improve our basic understanding of these traits and to provide selective markers in breeding. However, in yellow lupin there are very limited genomic resources to support research and no published information is available on the genetic control of adaptation traits. Results We aimed to address these deficiencies by developing the first linkage map for yellow lupin and conducting quantitative trait locus (QTL) analysis of yield under well-watered (WW) and water-deficit (WT) conditions. Two next-generation sequencing marker approaches - genotyping-by-sequencing (GBS) and Diversity Array Technology (DArT) sequencing - were employed to genotype a recombinant inbred line (RIL) population developed from a bi-parental cross between wild and domesticated parents. A total of 2,458 filtered single nucleotide polymorphism (SNP) and presence / absence variation (PAV) markers were used to develop a genetic map comprising 40 linkage groups, the first reported for this species. A number of significant QTLs controlling total biomass and 100-seed weight under two water (WW and WD) regimes were found on linkage groups YL-03, YL-09 and YL-26 that together explained 9 and 28% of total phenotypic variability. QTLs associated with length of the reproductive phase and time to flower were found on YL-01, YL-21, YL-35 and YL-40 that together explained a total of 12 and 44% of total phenotypic variation. Conclusion These genomic resources and the QTL information offer significant potential for use in marker-assisted selection in yellow lupin. Electronic supplementary material The online version of this article (10.1186/s12863-019-0767-3) contains supplementary material, which is available to authorized users.
Faba bean (Vicia faba L.) is a significant rotation crop in northern New South Wales. However, drought limits yield, and the reproductive structures of faba bean are sensitive to high temperatures and frost. Although early sowing can avoid terminal heat and drought stresses, the accumulation of large amounts of vegetative biomass may result in low yield. Experiments were conducted over 2 years at Breeza and Narrabri in north-western New South Wales, Australia, to examine the influence of sowing time on yield, yield components, maturity, pod distribution and biomass production. The second sowing date (early May) produced the highest yield and seed weight at both sites. However, the third sowing date (late May) produced greater yield than the first (mid-April) at Breeza, and this was associated with very high final biomass. At Narrabri, the first and third sowing dates produced similar low yield. Poorer yield in late-sown materials was likely due to terminal stress, and the impact will be greater in less favourable locations and seasons. The poorer yield of faba bean from the first sowing date was likely driven by excessive biomass accumulation, an effect that would be exacerbated in favourable seasons and locations. The lower seed weight observed at Breeza was possibly a result of greater intra-plant competition. The earliest maturing genotype had the highest yield and seed weight at both sites, indicating the importance of rapid pod growth and senescence in these warm and often water-limited environments. Dry matter production was greater with early sowing, higher moisture and warmer temperatures. In contrast to other studies, a weak relationship between biomass and yield was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.