Design of large composite structures requires understanding the scaling of their mechanical properties, an aspect often overlooked in the literature on composites.This contribution analyzes, experimentally and numerically, the intra-laminar size effect of textile composite structures. Test results of geometrically similar Single Edge Notched specimens made of [0 • ] 8 epoxy/carbon twill 2×2 laminates are reported. Results show that the nominal strength decreases with increasing specimen size and that the experimental data can be fitted well by Bažant's size effect law, allowing an accurate identification of the intra-laminar fracture energy of the material, G f .The importance of an accurate estimation of G f in situations where intra-laminar fracturing is the main energy dissipation mechanism is clarified by studying numerically its effect on crashworthiness of composite tubes. Simulations demonstrate that, for the analyzed geometry, a decrease of the fracture energy to 50% of the measured value corresponds to an almost 42% decrease in plateau crushing load. Further, assuming a vertical stress drop after the peak, a typical assumption of strength-based constitutive laws implemented in most commercial Finite Element codes, results in an strength underestimation of the order of 70%.The main conclusion of this study is that measuring accurately fracture energy and modeling correctly the fracturing behavior of textile composites, including their quasi-brittleness, is key. This can be accomplished neither by strength-or strain-based approaches, which neglect size effect, nor by LEFM which does not account for the finiteness of the Fracture Process Zone.
An accurate prediction of the orthotropic elastic constants of woven composites from the constituent properties can be achieved if the representative unit cell is subdivided into a large number of finite elements. But this would be prohibitive for microplane analysis of structures consisting of many representative unit cells when material damage alters the elastic constants in each time step in every element. This study shows that predictions almost as accurate and sufficient for practical purposes can be achieved in a much simpler and more efficient manner by adapting to woven composites the well-established microplane model, in a partly similar way as recently shown for braided composites. The undulating fill and warp yarns are subdivided into segments of different inclinations and, in the center of each segment, one microplane is placed normal to the yarn. As a new idea, a microplane triad is formed by adding two orthogonal microplanes parallel to the yarn, one of which is normal to the plane of the laminate. The benefit of the microplane approach is that it is easily extendable to damage and fracture. The model is shown to give realistic predictions of the full range of the orthotropic elastic constants for plain, twill, and satin weaves and is extendable to hybrid weaves and braids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.