In 1982, it was established that alpha-tocopheryl succinate (alpha-TS) was the most effective form of vitamin E in comparison to alpha-tocopherol, alpha-tocopheryl acetate and alpha-tocopheryl nicotinate in inducing differentiation, inhibition of proliferation and apoptosis in cancer cells, depending upon its concentration. During the last two decades, several studies have confirmed this observation in rodent and human cancer cells in culture and in vivo (animal model). The most exciting aspect of this alpha-TS effect is that it does not affect the proliferation of most normal cells. In spite of several studies published on the anti-cancer properties of alpha-TS, the value of this form of vitamin E has not drawn significant attention from researchers and clinicians. Therefore, a critical review on the potential role of alpha-TS in the management of cancer is needed. In addition, such a review can also provide in-depth analysis of existing literature on this subject. alpha-TS treatment causes extensive alterations in gene expression; however, only some can be attributed to differentiation, inhibition of proliferation and apoptosis. alpha-TS also enhances the growth-inhibitory effect of ionizing radiation, hyperthermia, some chemotherapeutic agents and biological response modifiers on tumor cells, while protecting normal cells against some of their adverse effects. Thus, alpha-TS alone or in combination with dietary micronutrients can be useful as an adjunct to standard cancer therapy by increasing tumor response and possibly decreasing some of the toxicities to normal cells.
Sodium butyrate produces reversible changes in morphology, growth rate, and enzyme activities of several mammalian cell types in culture. Some of these changes are similar to those produced by agents which increase the intracellular level of adenosine 3',5'-cyclic monophosphate (cAMP) or by analogs of cAMP. Sodium butyrate increases the intracellular level of cAMP by about two fold in neuroblastoma cells; therefore, some of the effects of sodium butyrate on these cells may in part be mediated by cAMP. Sodium butyrate appears to have properties of a good chemotherapeutic agent for neuroblastoma tumors because the treatment of neuroblastoma cells in culture causes cell death and "differentiation"; however, it is either innocuous or produces reversible morphological and biochemical alterations in other cell types.
Summary
1. An elevation of the intracellular level of cyclic AMP in neuroblastoma cells by prostaglandin E1 by an inhibitor of cyclic AMP phosphodiesterase, or by analogues of cyclic AMP irreversibly induces many differentiated functions which are characteristic of mature neurones. These include formation of long neurites, increase in size of soma and nucleus associated with a rise in total RNA and protein contents, increase in activities of specific neural enzymes, loss of malignancy, increase in sensitivity of adenylate cyclase to catecholamines and blockade of cells in G1‐stage of the cell cycle.
2. Other agents, including serum‐free medium, X‐irradiation, 6‐thioguanine, cytosine arabinoside, methotrexate, 5‐bromodeoxyuridine, nerve growth factor, glial extract and hypertonic medium can induce some of the differentiated functions which are induced by high intracellular cyclic AMP.
3. Morphological differentiation and differentiated biochemical functions can each be expressed in the absence of the other.
4. Many of the responses of normal embryonic nerve cells to cyclic AMP are similar to those of neuroblastoma cells.
5. A working hypothesis for the malignancy of nerve cells has been proposed. This states that an abnormal regulation of cyclic AMP phosphodiesterase activity which allows the expression of high amounts of this enzyme in neuroblastoma cells, may be one of the early lesions during a malignant transformation of nerve cells.
6. A new experimental therapeutic model for the treatment of neuroblastoma is proposed. This involves the administration of sodium butyrate followed by the injection of l‐dihydroxyphenylalanine (l‐dopa) and prostaglandin E1 in the presence of cyclic AMP phosphodiesterase inhibitor.
7. Recent studies have elucidated the control mechanisms of some differentiated functions in neuroblastoma cells. Cyclic AMP may become an important biological tool to probe the regulation and expression of many other differentiated functions in these cells. In addition to neuroblastoma cells, other neuronal culture systems are now available for investigating the problems of differentiation and maturation in nerve cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.