The Leydig cell-specific factor insulin-like peptide 3 (INSL3) is involved in testicular descent during embryo development, and has been suggested to regulate spermatogenesis and bone metabolism in the adult. Using a new, sensitive assay specific for rodent INSL3, we have mapped the secretion of INSL3 into peripheral blood in mice and during postnatal male rat development (in female rats, circulating INSL3 is at the level of detection). Maximum INSL3 is measured at Postnatal Day (PD) 40 in the rat and decreases to a significantly lower, stable value by PD60, indicating an "overshoot" effect in the establishment of Leydig cell functionality during the first wave of spermatogenesis. Aging rats ( approximately 24 mo) have markedly reduced circulating INSL3 levels, as do humans. Treatment of young adult rats with ethane dimethylsulfonate (EDS) leads to loss of mature Leydig cells and no detectable INSL3 in peripheral blood. INSL3 can be detected first at Day 27 after EDS treatment, returning to near normal levels by Day 37. Both primary rat Leydig cells and the mouse MA-10 tumor cell line secrete substantial amounts of INSL3 into the culture media in a constitutive manner, unregulated by common effectors, including hCG. Analysis of different testicular fluid compartments shows highest INSL3 concentration in the interstitial fluid (391.4 +/- 47.8 ng/ml). However, INSL3 evidently traverses the blood-testis barrier to enter the seminiferous compartment, rete testis, and epididymis in sufficient concentration to be able to address the specific INSL3 receptors (RXFP2) on post-meiotic germ cells and in the epididymis.
The hypothalamic–pituitary–gonadal (HPG) axis comprises pulsatile GnRH from the hypothalamus impacting on the anterior pituitary to induce expression and release of both LH and FSH into the circulation. These in turn stimulate receptors on testicular Leydig and Sertoli cells, respectively, to promote steroidogenesis and spermatogenesis. Both Leydig and Sertoli cells exhibit negative feedback to the pituitary and/or hypothalamus via their products testosterone and inhibin B, respectively, thereby allowing tight regulation of the HPG axis. In particular, LH exerts both acute control on Leydig cells by influencing steroidogenic enzyme activity, as well as chronic control by impacting on Leydig cell differentiation and gene expression. Insulin-like peptide 3 (INSL3) represents an additional and different endpoint of the HPG axis. This Leydig cell hormone interacts with specific receptors, called RXFP2, on Leydig cells themselves to modulate steroidogenesis, and on male germ cells, probably to synergize with androgen-dependent Sertoli cell products to support spermatogenesis. Unlike testosterone, INSL3 is not acutely regulated by the HPG axis, but is a constitutive product of Leydig cells, which reflects their number and/or differentiation status and their ability therefore to produce various factors including steroids, together this is referred to as Leydig cell functional capacity. Because INSL3 is not subject to the acute episodic fluctuations inherent in the HPG axis itself, it serves as an excellent marker for Leydig cell differentiation and functional capacity, as in puberty, or in monitoring the treatment of hypogonadal patients, and at the same time buffering the HPG output.
The human genome project has identified, besides ovarian relaxin (RLN), six other relaxin-like molecules (RLN3, H1-RLN, INSL3-6), most of which appear to be expressed in the testis and/or male reproductive system, together with four different G-protein-coupled receptors responsive to one or other of these peptides. Earlier work on relaxin in the male assumed the simplistic hypothesis of only a single relaxin-like entity. This review systematically examines the expression and physiology of relaxin-like molecules in the male reproductive system in order to reappraise the importance of this hormone system for male reproductive function. Although there are important species differences, only INSL3 and INSL6 appear to be generally expressed at a moderately high level within the testis, whereas ovarian RLN is consistently a major secretory product of the prostate epithelium. However, all members of this relaxin-like family appear to be expressed also at a low level in different organs of the male reproductive system, suggesting possible autocrine/paracrine effects. The four receptors (RXFP1-4) for these peptides are also expressed to differing levels in both somatic and seminiferous compartments of the testis and in the prostate, supporting relevant functions for most members of this interesting peptide family. Recent studies of relaxin family peptides in prostate pathology highlight their functional importance in the clinical context as potential causative, diagnostic and therapeutic agents and warrant more specific and detailed studies of their roles also in regard to male fertility and other aspects of male reproductive function.
In myometrium of pigs and rats, though not humans, relaxin appears to mediate an inhibition of spontaneous and oxytocin-induced contractility, presumably acting through a G-protein coupled receptor (RXFP1) to generate cAMP. In humans, circulating relaxin is highest in the first trimester, including the time of implantation, when transitory uterine quiescence could help a blastocyst to implant. We investigated whether relaxin can activate adenylate cyclase in primary human myometrial cells from non-pregnant tissue, and we show that relaxin is able to stimulate the generation of cAMP in a manner, which is dependent upon a tyrosine phosphorylation activity, as in the endometrium. We identified transcripts for the relaxin receptor RXFP1 as full-length variants, though a minor splice variant missing exon 2 was also present in low amounts. These cells also express transcripts encoding RXFP2, the receptor for the closely related hormone, INSL3. Although able to respond to relaxin at high concentrations, this receptor does not appear to function by contributing to the cAMP production in human myometrial cells, nor does INSL3 act as a functional agonist or antagonist of relaxin action. In conclusion, the inability of relaxin to inhibit contractility in human myometrial cells would appear to be due to events downstream of simple cAMP generation.
The present retrospective study was largely supported by departmental funds. There were no competing interests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.