Purpose: We compared the clinical factors, including anterior chamber tube parameters, in patients with and without corneal endothelial cell damage after Ahmed glaucoma valve (AGV) implantation. Methods: In this retrospective and comparative case series, patients who underwent AGV implantation were enrolled consecutively. Serial specular microscopy was performed before and after AGV implantation. Patients were divided into two groups depending on whether there was a significant decrease in corneal endothelial cell density (ECD), which was determined by each patient’s rate of ECD change (%/year), calculated using linear regression analyses. Tube parameters such as the tube-cornea distance (TCD) and tube-cornea angle (TCA) were measured with anterior segment optical coherence tomography. Clinical factors related to the rate of ECD change were evaluated with regression analyses and compared between the two groups. The tipping point at which tube parameters became significantly associated with the rate of ECD change was identified with broken stick regression analyses. Results: There were 30 eyes (32.3%) with ECD damage (group 1) and 63 eyes (67.7%) without damage (group 2). The mean rate of ECD change (%/year) was −18.82 ± 22.97 and 2.14 ± 2.93 in groups 1 and 2, respectively (p < 0.001). The TCA was the only clinical factor associated with the rate of ECD change (regression coefficient, β = 1.254, p < 0.001). The tipping point in the TCA was 26.70° (95% confidence interval, CI: 23.75–29.64°). The mean TCD (mm) was 0.98 ± 0.38 and 1.26 ± 0.39 (p = 0.002), and the mean TCA (degrees) was 28.67 ± 7.79 and 36.35 ± 5.35 (p < 0.001) in groups 1 and 2, respectively. Conclusions: A wider TCA was protectively associated with the rate of ECD change, and the TCA was significantly narrower in patients with ECD damage. When inserting a tube into the anterior chamber, surgeons should therefore try to secure a wide TCA of about 30°. In patients with a narrow TCA after AGV implantation, increased attention should be directed toward whether ECD decreases continuously.
Purpose: To evaluate changes in macular thickness in patients continuing prostaglandin analog (PGA) treatment during the perioperative period involving bromfenac treatment. Methods: Patients with glaucoma who were using a topical PGA were randomly assigned to two groups in this randomized controlled trial: PGA continuing study group and PGA discontinued glaucoma control group. Patients without ocular diseases other than cataract were enrolled into the non-glaucomatous group. After the cataract surgery, the patients used bromfenac twice per day for 4 weeks. Optical coherence tomography was performed in all patients preoperatively and at 1 month postoperatively. Changes in macular thickness were compared among the three groups. Results: There were 32 eyes in the study group, 33 eyes in the glaucoma control group, and 58 eyes in the non-glaucomatous group. We found statistically significant postoperative changes in central macular thickness in all groups (4.30 ± 8.01 μm in the PGA continuing group, 9.20 ± 13.88 μm in the PGA discontinued group, and 7.06 ± 7.02 μm in the non-glaucomatous group, all p < 0.008), but no significant difference among the three groups (p = 0.161). Cystoid macular edema occurred in only one patient in the non-glaucomatous group (p = 0.568). Conclusions: Continuous use of PGAs during the perioperative period was not significantly associated with increased macular thickness after uncomplicated cataract surgery. In the absence of other risk factors (e.g., capsular rupture, uveitis, or diabetic retinopathy), discontinuing PGAs for the prevention of macular edema after cataract surgery with postoperative bromfenac treatment is unnecessary in patients with glaucoma.
Objective To investigate the effects of axial length (AL) on the peripapillary microvascular density acquired from optical coherence tomography angiography (OCTA). Methods Retrospective observational study. A total of 111 eyes from 111 normal healthy subjects were examined. The subjects were divided into three groups according to the AL: Group 1 (AL: < 24.0 mm; 35 eyes), Group 2 (AL: 24.0–25.99 mm; 37 eyes), and Group 3 (AL: ≥ 26 mm; 39 eyes). Peripapillary OCTA images were acquired using 6× 6 mm angiography scans, and vessel density (VD) and perfusion density (PD) of the superficial capillary plexus were calculated automatically. VD and PD were compared among the three groups according to the distance from the optic disc (inner and outer rings). Linear regression analyses were also performed to identify clinical factors associated with average VD. Results The average ALs of Groups 1–3 were 23.33± 0.57, 25.05± 0.60, and 27.42± 0.82, respectively. Average VD (P = 0.009) and PD (P = 0.029) in the inner ring increased with increasing AL. However, average VD (P < 0.001) and PD (P < 0.001) in the outer ring decreased with AL increased; the same trends were found for the full areas (VD, p<0.001; PD, p = 0.001). Average VDs in the inner and outer rings were not associated (P = 0.938). Conclusions Peripapillary VD and PD were significantly associated with AL. Depending on the distance from the disc, peripapillary VDs and PDs of the inner and outer rings were differentially affected by AL. Physicians should therefore consider the effects of AL in the analyses of peripapillary microvasculature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.