The use of humidifier disinfectant (HD) has been determined to be associated with lung injuries (HDLI) in Korea. Although HD brands containing polyhexamethylene guanidine (PHMG) oligomers have been found to cause more HDLI compared to brands containing other disinfectants, the physicochemical properties of PHMG have been poorly defined. We aimed to quantify the PHMG dissolved in HD brands, characterize the number-average (Mn) and weight-average (Mw) molecular masses, and identify the polymerization degree of PHMG. Analysis of the PHMG oligomers was performed using a matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF MS) operated in positive-ion reflectron mode. Eight brands of HD containing PHMG were identified. The PHMG concentrations in these brands ranged from 160 to 37,200 ppm (mean = 3100.9 ppm). Concentration was a significant variable among and within HD brands. The degree of PHMG oligomerization fell within the range of two to four. The averages of Mn and Mw were 517.2 g/mol (range: 422–613 g/mol) and 537.3 g/mol (range: 441.0–678.0 g/mol), respectively. Based on the average molecular weight and the degree of polymerization, the PHMG examined here could be regarded as oligomers, which may be associated with the highest proportion of HDLI being caused by PHMG.
(1) Background: Household humidifier disinfectant (HD) brands containing polyhexamethylene guanidine (PHMG) have been found to cause the most HD-associated lung injuries (HDLIs) in the Republic of Korea. Nevertheless, no study has attempted to characterize the potential association of the health effects, including HDLI, with the physicochemical properties of PHMG dissolved in different HD brands. This study aimed to characterize the molecular weight (MW) distribution, the number-average molecular weight (Mn), the weight-average molecular weight (Mw), and the structural types of PHMG used in HD products. (2) Methods: Quantitative measurements were made using matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry (MALDI-TOF MS). The Mn, Mw, and MW distributions were compared among various HD products. (3) Results: The mean Mn and Mw were 542.4 g/mol (range: 403.0–692.2 g/mol) and 560.7 g/mol (range: 424.0–714.70 g/mol), respectively. The degree of PHMG oligomerization ranged from 3 to 7. The MW distribution of PHMG indicated oligomeric compounds regardless of the HD brands. (4) Conclusions: Based on the molecular weight distribution, the average molecular weight of PHMG, and the degree of polymerization, the PHMG collected from HDLI victims could be regarded as an oligomer. PHMG, as used in household humidifiers, should not be exempted from toxic chemical registration as a polymer. Further study is necessary to examine the association of PHMG oligomeric compounds and respiratory health effects, including HDLI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.