The time-dependent variational principle is used to optimize the linear and nonlinear parameters of Gaussian basis functions to solve the time-dependent Schrödinger equation in 1 and 3 dimensions for a one-body soft Coulomb potential in a laser field. The accuracy is tested comparing the solution to finite difference grid calculations using several examples. The approach is not limited to one particle systems and the example presented for two electrons demonstrates the potential to tackle larger systems using correlated basis functions.
We report on extensive measurements at the Cornell Electron-positron Storage Ring of electroncloud-induced betatron tune shifts for trains of positron bunches at 2.1 and 5.3 GeV with bunch populations ranging between 0.64 × 10 10 and 9.6 × 10 10 . Measurements using a witness bunch with variable distance from the end of the train and variable bunch population provide information on cloud decay and cloud pinching during the bunch passage. We employ Monte Carlo simulations of the reflection and absorption of synchrotron radiation photons to determine the pattern of absorption sites around the circumference of the storage ring. The Geant4 simulation toolkit is used to model the interactions of the photons with the beampipe wall and determine the production energy and location distributions of the photoelectrons which seed the electron cloud. An electron cloud buildup model based on fitted ring-averaged secondary-yield properties of the vacuum chamber predicts tune shifts in good agreement with the measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.