Neurodegenerative disorders involve the slow and gradual degeneration of axons and neurons in the central nervous system (CNS), resulting in abnormalities in cellular function and eventual cellular demise. Patients with these disorders succumb to the high medical costs and the disruption of their normal lives. Current therapeutics employed for treating these diseases are deemed palliative. Hence, a treatment strategy that targets the disease’s cause, not just the symptoms exhibited, is desired. The synergistic use of nanomedicine and gene therapy to effectively target the causative mutated gene/s in the CNS disease progression could provide the much-needed impetus in this battle against these diseases. This review focuses on Parkinson’s and Alzheimer’s diseases, the gene/s and proteins responsible for the damage and death of neurons, and the importance of nanomedicine as a potential treatment strategy. Multiple genes were identified in this regard, each presenting with various mutations. Hence, genome-wide sequencing is essential for specific treatment in patients. While a cure is yet to be achieved, genomic studies form the basis for creating a highly efficacious nanotherapeutic that can eradicate these dreaded diseases. Thus, nanomedicine can lead the way in helping millions of people worldwide to eventually lead a better life.
Parkinson’s disease (PD), a neurodegenerative disorder, is a life-altering, debilitating disease exhibiting a severe physical, psychological, and financial burden on patients. Globally, approximately 7–10 million people are afflicted with this disease, with the number of cases estimated to increase to 12.9 million by 2040. PD is a progressive movement disorder with nonmotor symptoms, including insomnia, depression, anxiety, and anosmia. While current therapeutics are available to PD patients, this treatment remains palliative, necessitating alternative treatment approaches. A major hurdle in treating PD is the protective nature of the blood–brain barrier (BBB) and its ability to limit access to foreign molecules, including therapeutics. Drugs utilized presently are nonspecific and administered at dosages that result in numerous adverse side effects. Nanomedicine has emerged as a potential strategy for treating many diseases. From the array of nanomaterials available, lipid nanoparticles (LNPs) possess various advantages, including enhanced permeability to the brain via passive diffusion and specific and nonspecific transporters. Their bioavailability, nontoxic nature, ability to be conjugated to drugs, and targeting moieties catapult LNPs as a promising therapeutic nanocarriers for PD. While PD-related studies are limited, their potential as therapeutics is evident in their formulations as vaccines. This review is aimed at examining the roles and properties of LNPs that make them efficient therapeutic nanodelivery vehicles for the treatment of PD, including therapeutic advances made to date.
Cervical cancer is fast becoming a global health crisis, accounting for most female deaths in low- and middle-income countries. It is the fourth most frequent cancer affecting women, and due to its complexity, conventional treatment options are limited. Nanomedicine has found a niche in gene therapy, with inorganic nanoparticles becoming attractive tools for gene delivery strategies. Of the many metallic nanoparticles (NPs) available, copper oxide NPs (CuONPs) have been the least investigated in gene delivery. In this study, CuONPs were biologically synthesized using Melia azedarach leaf extract, functionalized with chitosan and polyethylene glycol (PEG), and conjugated to the targeting ligand folate. A peak at 568 nm from UV-visible spectroscopy and the characteristic bands for the functional groups using Fourier-transform infrared (FTIR) spectroscopy confirmed the successful synthesis and modification of the CuONPs. Spherical NPs within the nanometer range were evident from transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). The NPs portrayed exceptional binding and protection of the reporter gene, pCMV-Luc-DNA. In vitro cytotoxicity studies revealed cell viability >70% in human embryonic kidney (HEK293), breast adenocarcinoma (MCF-7), and cervical cancer (HeLa) cells, with significant transgene expression, obtained using the luciferase reporter gene assay. Overall, these NPs showed favorable properties and efficient gene delivery, suggesting their potential role in gene therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.