Sentence similarity measures play an increasingly important role in textrelated research and applications in areas such as text mining, web page retrieval and dialogue systems. Existing methods for computing sentence similarity have been adopted from approaches used for long text documents. These methods process sentences in a very high dimensional space and are consequently inefficient, require human input and are not adaptable to some application domains. This paper focuses directly on computing the similarity between very short texts of sentence length. It presents an algorithm that takes account of semantic information and word order information implied in the sentences. The semantic similarity of two sentences is calculated using information from a structured lexical database and from corpus statistics. The use of a lexical database enables our method to model human common sense knowledge and the incorporation of corpus statistics allows our method to be adaptable to different domains. The proposed method can be used in a variety of applications that involve text knowledge representation and discovery. Experiments on two sets of selected sentence pairs demonstrate that the proposed method provides a similarity measure that shows a significant correlation to human intuition.
This paper proposes a generic methodology and architecture for developing a novel conversational intelligent tutoring system (CITS) called Oscar that leads a tutoring conversation and dynamically predicts and adapts to a student's learning style. Oscar aims to mimic a human tutor by implicitly modelling the learning style during tutoring, and personalising the tutorial to boost confidence and improve the effectiveness of the learning experience. Learners can intuitively explore and discuss topics in natural language, helping to establish a deeper understanding of the topic. The Oscar CITS methodology and architecture are independent of the learning styles model and tutoring subject domain. Oscar CITS was implemented using the Index of Learning Styles (ILS) model (Felder & Silverman 1988) to deliver an SQL tutorial. Empirical studies involving real students have validated the prediction of learning styles in a real-world teaching/learning environment. The results showed that all learning styles in the ILS model were successfully predicted from a natural language tutoring conversation, with an accuracy of 61-100%. Participants also found Oscar's tutoring helpful and achieved an average learning gain of 13%.
The focus of computerised learning has shifted from content delivery towards personalised online learning with Intelligent Tutoring Systems (ITS). Oscar Conversational ITS (CITS) is a sophisticated ITS that uses a natural language interface to enable learners to construct their own knowledge through discussion. Oscar CITS aims to mimic a human tutor by dynamically detecting and adapting to an individual's learning styles whilst directing the conversational tutorial. Oscar CITS is currently live and being successfully used to support learning by university students. The major contribution of this paper is the development of the novel Oscar CITS adaptation algorithm and its application to the Felder-Silverman learning styles model. The generic Oscar CITS adaptation algorithm uniquely combines the strength of an individual's learning style preference with the available adaptive tutoring material for each tutorial question to decide the best fitting adaptation. A case study is described, where Oscar CITS is implemented to deliver an adaptive SQL tutorial. Two experiments are reported which empirically test the Oscar CITS adaptation algorithm with students in a real teaching/learning environment. The results show that learners experiencing a conversational tutorial personalised to their learning styles performed significantly better during the tutorial than those with an unmatched tutorial.
No abstract
Intelligent Tutoring Systems personalise learning for students with different backgrounds, abilities, behaviours and knowledge. One way to personalise learning is through consideration of individual differences in preferred learning style. OSCAR is the name of a Conversational Intelligent Tutoring System that models a person's learning style using natural language dialogue during tutoring in order to dynamically predict, and personalise, their tutoring session. Prediction of learning style is undertaken by capturing independent behaviour variables during the tutoring conversation with the highest value variable determining the student's learning style. A weakness of this approach is that it does not take into consideration the interactions between behaviour variables and, due to the uncertainty inherently present in modelling learning styles, small differences in behaviour can lead to incorrect predictions. Consequently, the learner is presented with tutoring material not suited to their learning style. This paper proposes a new method that uses fuzzy decision trees to build a series of fuzzy predictive models combining these variables for all dimensions of the Felder Silverman Learning Styles model. Results using live data show the fuzzy models have increased the predictive accuracy of OSCAR-CITS across four learning style dimensions and facilitated the discovery of some interesting relationships amongst behaviour variables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.