Understanding host immune function and ecoimmunology is increasingly important at a time when emerging infectious diseases (EIDs) threaten wildlife. One EID that has emerged and spread widely in recent years is chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), which is implicated unprecedented amphibian declines around the world. The impacts of Bd have been severe for many amphibian species, but some populations have exhibited signs of persistence, and even recovery, in some regions. Many mechanisms may underpin this pattern and amphibian immune responses are likely one key component. Although we have made great strides in understanding amphibian immunity, the complement system remains poorly understood. The complement system is a nonspecific, innate immune defense that is known to enhance other immune responses. Complement activation can occur by three different biochemical pathways and result in protective mechanisms, such as inflammation, opsonization, and pathogen lysis, thereby providing protection to the host. We currently lack an understanding of complement pathway activation for chytridiomycosis, but several studies have suggested that it may be a key part of an early and robust immune response that confers host resistance. Here, we review the available research on the complement system in general as well as amphibian complement responses to Bd infection. Additionally, we propose future research directions that will increase our understanding of the amphibian complement system and other immune responses to Bd. Finally, we suggest how a deeper understanding of amphibian immunity could enhance the conservation and management of amphibian species that are threatened by chytridiomycosis.
Anurans (frogs and toads) are among the most globally threatened taxonomic groups. Successful conservation of anurans will rely on improved data on the status and changes in local populations, particularly for rare and threatened species. Automated sensors, such as acoustic recorders, have the potential to provide such data by massively increasing the spatial and temporal scale of population sampling efforts. Analyzing such data sets will require robust and efficient tools that can automatically identify the presence of a species in audio recordings. Like bats and birds, many anuran species produce distinct vocalizations that can be captured by autonomous acoustic recorders and represent excellent candidates for automated recognition. However, in contrast to birds and bats, effective automated acoustic recognition tools for anurans are not yet widely available. An effective automated callrecognition method for anurans must be robust to the challenges of real-world field data and should not require extensive labeled data sets. We devised a vocalization identification tool that classifies anuran vocalizations in audio recordings based on their periodic structure: the repeat interval-based bioacoustic identification tool (RIB-BIT). We applied RIBBIT to field recordings to study the boreal chorus frog (Pseudacris maculata) of temperate North American grasslands and the critically endangered variable harlequin frog (Atelopus varius) of tropical Central American rainforests. The tool accurately identified boreal chorus frogs, even when they vocalized in heavily overlapping choruses and identified variable harlequin frog vocalizations at a field site where it had been very rarely encountered in visual surveys. Using a few simple parameters, RIBBIT can detect any vocalization with a periodic structure, including those of many anurans, insects, birds, and mammals. We provide open-source implementations of RIBBIT in Python and R to support its use for other taxa and communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.