The structure and function of membrane proteins can be significantly impacted by the surrounding lipid environment, but membrane protein-lipid interactions in lipid bilayers are often difficult to study due to their transient and polydisperse nature. Here, we used two native mass spectrometry (MS) approaches to investigate how the Escherichia coli ammonium transporter (AmtB) selectively remodels its local lipid environment in heterogeneous lipoprotein nanodiscs. First, we used gas-phase ejection to isolate AmtB with bound lipids from heterogeneous nanodiscs with different combinations of lipids. Second, we used solution-phase detergent flash extraction as an orthogonal approach to study AmtB remodeling with native MS. Flash extraction of AmtB showed that Triton X-100 retains lipid selectivity, but C8E4 distorts preferential lipid interactions. Both approaches reveal that AmtB has a few tight binding sites for PC, is selective for binding PG over-all, and is nonselective for PE, providing a detailed picture of how AmtB binds different lipid head groups in the context of mixed lipid bilayers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.