Smart agriculture is a popular domain due to its intensified growth in recent times. This domain aggregates the advantages of several computing technologies, where the IoT is the most popular and beneficial. In this work, a novel and effective deep learning based framework is developed to detect intrusions in smart farming systems. The architecture is three-tier, with the first tier being the sensor layer, which involves the placement of sensors in agricultural areas. The second tier is the Fog Computing Layer (FCL), which consists of Fog nodes, and the proposed IDS is implemented in each Fog node. The gathered information is transferred to this fog layer for further analysis of data. The third tier is the cloud computing layer, which provides data storage and end-to-end services. The proposed model includes a fused CNN model with the bidirectional gated recurrent unit (Bi-GRU) model to detect and classify intruders. An attention mechanism is included within the BiGRU model to find the key features responsible for identifying the DDoS attack. In addition, the accuracy of the classification model is improved by using a nature-inspired meta-heuristic optimization algorithm called the Wild Horse Optimization (WHO) algorithm. The last layer is the cloud layer, which collects data from fog nodes and offers storage services. The proposed system will be implemented in the Python platform, using ToN-IoT and APA-DDoS attack datasets for assessment. The proposed system outperforms the existing methods in accuracy (99.35%), detection rate (98.99%), precision (99.9%) and F-Score (99.08%) for the APA DDoS attack dataset and the achieved accuracy of the ToN-IoT dataset (99.71%), detection rate (99.02%), precision (99.89%) and F-score (99.05%).
Internet of Things (IoT) technology has been incorporated into the majority of people’s everyday lives and places of employment due to the quick development in information technology. Modern agricultural techniques increasingly use the well-known and superior approach of managing a farm known as “smart farming”. Utilizing a variety of information and agricultural technologies, crops are observed for their general health and productivity. This requires monitoring the condition of field crops and looking at many other indicators. The goal of smart agriculture is to reduce the amount of money spent on agricultural inputs while keeping the quality of the final product constant. The Internet of Things (IoT) has made smart agriculture possible through data collection and storage techniques. For example, modern irrigation systems use effective sensor networks to collect field data for the best plant irrigation. Smart agriculture will become more susceptible to cyber-attacks as its reliance on the IoT ecosystem grows, because IoT networks have a large number of nodes but limited resources, which makes security a difficult issue. Hence, it is crucial to have an intrusion detection system (IDS) that can address such challenges. In this manuscript, an IoT-based privacy-preserving anomaly detection model for smart agriculture has been proposed. The motivation behind this work is twofold. Firstly, ensuring data privacy in IoT-based agriculture is of the utmost importance due to the large volumes of sensitive information collected by IoT devices, including on environmental conditions, crop health, and resource utilization data. Secondly, the timely detection of anomalies in smart agriculture systems is critical to enable proactive interventions, such as preventing crop damage, optimizing resource allocation, and ensuring sustainable farming practices. In this paper, we propose a privacy-encoding-based enhanced deep learning framework for the difficulty of data encryption and intrusion detection. In terms of data encoding, a novel method of a sparse capsule-auto encoder (SCAE) is proposed along with feature selection, feature mapping, and feature normalization. An SCAE is used to convert information into a new encrypted format in order to prevent deduction attacks. An attention-based gated recurrent unit neural network model is proposed to detect the intrusion. An AGRU is an advanced version of a GRU which is enhanced by an attention mechanism. In the results section, the proposed model is compared with existing deep learning models using two public datasets. Parameters such as recall, precision, accuracy, and F1-score are considered. The proposed model has accuracy, recall, precision, and F1-score of 99.9%, 99.7%, 99.9%, and 99.8%, respectively. The proposed method is compared using a variety of machine learning techniques such as the deep neural network (DNN), convolutional neural network (CNN), recurrent neural network (RNN), and long short-term memory (LSTM).
Diagnosing plant disease is the foundation for effective and accurate plant disease prevention in a complicated environment. Smart farming is one of the fast-growing processes in the agricultural system, with the identification of disease in plants being a major one to help farmers. The processed data is saved in a database and used in making decisions in advance support, analysis of plants, and helps in crop planning. Plants are one of the essential resources for avoiding global warming. However, diseases such as blast, canker, black spot, brown spot, and bacterial leaf damage the plants. In this paper, image processing integration is developed to identify the type of disease and help automatically inspect all the leaf batches by storing the processed data. In some places, farmers are unaware of the experts and do not have proper facilities. In such conditions, one technique can be beneficial in keeping track and monitoring more crops. This technique makes it much easier and cheaper to detect disease. Machine learning can provide a method and algorithm to detect the disease. There should be training in images of all types of leaves, including healthy and disease leaf images. Five-stage detection processes are done in this paper. The stages are preprocessing, segmentation using k-Mean, feature extraction, features optimization using Firefly optimization Algorithm (FA), and classification using Support Vector Machine (SVM). The accuracy rate achieved using the proposed technique, i.e., GA-SVM is 91.3%, sensitivity is 90.72%, specificity 91.88, and precision is 92%. The results are evaluated using the matlab software tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.