Neurodevelopmental disorders are marked by inappropriate synaptic connectivity early in life, but how disruption of experience-dependent plasticity contributes to cognitive and behavioural decline in adulthood is unclear. Here we show that pup gathering behaviour and associated auditory cortical plasticity are impaired in female Mecp2het mice, a model of Rett syndrome. In response to learned maternal experience, Mecp2het females exhibited transient changes to cortical inhibitory networks typically associated with limited plasticity. Averting these changes in Mecp2het through genetic or pharmacological manipulations targeting the GABAergic network restored gathering behaviour. We propose that pup gathering learning triggers a transient epoch of inhibitory plasticity in auditory cortex that is dysregulated in Mecp2het. In this window of heightened sensitivity to sensory and social cues, Mecp2 mutations suppress adult plasticity independently from their effects on early development.
Mutations in methyl-CpG-binding protein 2 (MeCP2) cause Rett syndrome, an autism spectrum-associated disorder with a host of neurological and sensory symptoms, but the pathogenic mechanisms remain elusive. Neuronal circuits are shaped by experience during critical periods of heightened plasticity. The maturation of cortical GABA inhibitory circuitry, the parvalbumin + (PV + ) fast-spiking interneurons in particular, is a key component that regulates the initiation and termination of the critical period. Using MeCP2-null mice, we examined experience-dependent development of neural circuits in the primary visual cortex. The functional maturation of parvalbumin interneurons was accelerated upon vision onset, as indicated by elevated GABA synthetic enzymes, vesicular GABA transporter, perineuronal nets, and enhanced GABA transmission among PV interneurons. These changes correlated with a precocious onset and closure of critical period and deficient binocular visual function in mature animals. Reduction of GAD67 expression rescued the precocious opening of the critical period, suggesting its major role in MECP2-mediated regulation of experience-driven circuit development. Our results identify molecular changes in a defined cortical cell type and link aberrant developmental trajectory to functional deficits in a model of neuropsychiatric disorder.critical period plasticity | parvalbumin interneurons | visual cortex | Rett syndrome | MeCP2
Despite the identification of PBC proteins as cofactors that provide DNA affinity and binding specificity for the HOX homeodomain proteins, HOX proteins do not demonstrate robust activity in transient-transcription assays and few authentic downstream targets have been identified for these putative transcription factors. During a search for additional cofactors, we established that each of the 14 HOX proteins tested, from 11 separate paralog groups, binds to CBP or p300. All six isolated homeodomain fragments tested bind to CBP, suggesting that the homeodomain is a common site of interaction. Surprisingly, CBP-p300 does not form DNA binding complexes with the HOX proteins but instead prevents their binding to DNA. The HOX proteins are not substrates for CBP histone acetyltransferase (HAT) but instead inhibit the activity of CBP in both in vitro and in vivo systems. These mutually inhibitory interactions are reflected by the inability of CBP to potentiate the low levels of gene activation induced by HOX proteins in a range of reporter assays. We propose two models for HOX protein function: (i) HOX proteins may function without CBP HAT to regulate transcription as cooperative DNA binding molecules with PBX, MEIS, or other cofactors, and (ii) the HOX proteins may inhibit CBP HAT activity and thus function as repressors of gene transcription.The HOX homeodomain (HD) proteins have long been recognized as master developmental regulators. However, despite intensive efforts, their mechanism of action remains obscure. Soon after HOX genes were first described, the isolated 60-amino-acid HD was shown to bind DNA (27), and a paradigm that the HOX proteins function as transcription factors was quickly established (17). However, many full-length HOX proteins bind DNA very poorly in in vitro assays and/or exhibit little binding specificity (44). An apparent answer to both of these problems was the demonstration that HOX proteins form cooperative DNA binding complexes with the PBC HD proteins, including PBX/EXD and MEIS/PREP/HTX (reviewed in reference 23). These PBC-HOX interactions increased the DNA binding affinity of HOX proteins and defined an apparent specificity code for DNA binding across the 13 paralog groups into which HOX proteins can be assigned on the basis of amino acid homology (6, 47). The most compelling evidence for a model in which HOX proteins function as DNA binding factors is presented in a series of papers showing that modification of putative PBX-HOX recognition sites in the upstream regulatory regions of several HOXB genes causes changes in lacZ reporter gene expression in transgenic mice (22,33,50). Persuasive data for HOX proteins acting as DNA binding proteins has also been obtained in Drosophila, which carries reporter genes in various mutant backgrounds (40). New data also suggest that HOX proteins function with a PBX-like protein to regulate zebra fish morphogenesis (35). However, other recent studies have questioned the concept that HOX-PBC binding sites confer target gene regulatory specificity (...
In mammalian neocortex, the delicate balance of neural circuits is regulated by a rich repertoire of inhibitory control mechanisms mediated by diverse classes of GABAergic interneurons. A key step common to all GABAergic neurons is the synthesis of GABA, catalyzed by 2 isoforms of glutamic acid decarboxylases (GAD). Among these, GAD67 is the rate-limiting enzyme. GAD67 level is regulated by neural activity and is altered in multiple neuropsychiatric disorders. The significance of altered GAD67 levels on inhibitory transmission, however, remains unclear. The presence of GAD65, postsynaptic GABA receptor regulation, and the diversity of cortical interneurons make the link from GAD67 levels to GABA transmission less than straightforward. Here, we selectively removed one allele of the GAD67 gene, Gad1, in PV interneurons in juvenile mice. We found substantial deficits in transmission from PV to pyramidal neurons in prefrontal cortex, along with increases of pyramidal cell excitability and excitation/inhibition balance in PV cells. Synaptic deficits recovered in adult mice, suggesting engagement of homeostatic and compensatory mechanisms. These results demonstrate that GAD67 levels directly influence synaptic inhibition. Thus, GAD67 deficiency in PV cells likely contributes to cortical dysfunction in disease states; the reversibility of synaptic deficits suggests nonpermanent damage to inhibitory circuitry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.