Hummers method is commonly used for the fabrication of graphene oxide (GO) from graphite particles. The oxidation process also leads to the cutting of graphene sheets into small pieces. From a thermodynamic perspective, it seems improbable that the aggressive, somewhat random oxidative cutting process could directly result in graphene nanosheets without destroying the intrinsic π-conjugated structures and the associated exotic properties of graphene. In Hummers method, both KMnO4 and NO2(+) (nitronium ions) in concentrated H2SO4 solutions act as oxidants via different oxidation mechanisms. From both experimental observations and theoretical calculations, it appears that KMnO4 plays a major role in the observed oxidative cutting and unzipping processes. We find that KMnO4 also limits nitronium oxidative etching of graphene basal planes, therefore slowing down graphene fracturing processes for nanosheet fabrication. By intentionally excluding KMnO4 and exploiting pure nitronium ion oxidation, aided by the unique thermal and kinetic effects induced by microwave heating, we find that graphite particles can be converted into graphene nanosheets with their π-conjugated aromatic structures and properties largely retained. Without the need of any postreduction processes to remove the high concentration of oxygenated groups that results from Hummers GO formation, the graphene nanosheets as-fabricated exhibit strong absorption, which is nearly wavelength-independent in the visible and near-infrared (NIR) regions, an optical property typical for intrinsic graphene sheets. For the first time, we demonstrate that strong photoacoustic signals can be generated from these graphene nanosheets with NIR excitation. The photo-to-acoustic conversion is weakly dependent on the wavelength of the NIR excitation, which is different from all other NIR photoacoustic contrast agents previously reported.
A new mechanism of O 2 reduction, which follows principles different from those generally accepted for describing ORR reduction on heteroatom-doped carbons, is suggested. It is based on the ability of oxygen to strongly adsorb in narrow hydrophobic pores. In this respect, a cellular vitreous carbon foam− graphene oxide composite was synthesized. The materials were doped with sulfur and nitrogen and/or heat-treated at 950 °C in order to modify their surface chemistry. The resultant samples presented a macro-/microporous nature and were tested as ORR catalysts. To understand the reduction process, their surfaces were extensively characterized from texture and chemistry points of view. The treatment applied markedly changed the volumes of small micropores and the surface hydrophilicity/polarity character. The results showed that the electron transfer number was between 3.87 and 3.96 and the onset potential reached 0.879 V for the best-performing sample. It is noteworthy that the best-performing sample has the highest volume of pores smaller than 0.7 nm while there was no heteroatom doping. The hydrophobicity and the strong adsorption forces provided by these pores to pull oxygen inside are the possible reasons for the observed excellent performance. A decrease in the volume of these pores resulted in a decrease in the catalytic performance. When the surface was modified with heteroatoms, the performances worsened further because of the induced hydrophilicity.
The unique properties of a holey graphene sheet, referred to as a graphene sheet with nanoholes in its basal plane, lead to wide range of applications that cannot be achieved by its nonporous counterpart. However, the large-scale solution-based production requires graphene oxide (GO) or reduced GO (rGO) as the starting materials, which take hours to days for fabrication. Here, an unexpected discovery that GO with or without holes can be controllably, directly, and rapidly (tens of seconds) fabricated from graphite powder via a one-step-one-pot microwave assisted reaction with a production yield of 120 wt% of graphite is reported. Furthermore, a fast and low temperature approach is developed for simultaneous nitrogen (N) doping and reduction of GO sheets. The N-doped holey rGO sheets demonstrate remarkable electrocatalytic capabilities for the electrochemical oxygen reduction reaction. The existence of the nanoholes provides a "short cut" for efficient mass transport and dramatically increases edges and surface area, therefore, creates more catalytic centers. The capability of rapid fabrication and N-doping as well as reduction of holey GO can lead to development of an efficient catalyst that can replace previous coin metals for energy generation and storage, such as fuel cells and metal-air batteries.
We report on magnetic susceptibility, NMR, and EPR measurements of pristine and Fe-doped micro- and nanosized graphenes (LGr and NGr), prepared by a unique microwave enabled technique from graphite particles. Significant orbital diamagnetism in the studied compounds (∼70% of that of bulk graphite) is revealed. At T < 30 K, a weak paramagnetism due to edge π-electronic spin states is observed. Reduction on the lateral size of the graphene sheets results in the suppression of orbital diamagnetism and strengthening of the paramagnetic contribution due to an increased number of open edges in NGr. Significant acceleration of 13C nuclear spin–lattice relaxation under iron doping of both LGr and NGr samples is attributed to the interaction of nuclear spins with paramagnetic Fe ions and indicates that the latter are anchored to the graphene edges. The amount of Fe ions attached to the edges of NGr-Fe is ∼6.6 times higher than that of LGr-Fe. This finding reveals the noticeable capability of nanographene to fix Fe ions on its periphery terminated by various oxygen-containing groups and atomic hydrogen. Several schemes for such fixation are proposed.
A highly porous graphitic carbon material, dually-doped with P and S, was studied as a metal free catalyst for aerobic oxidation reactions. Catalytic mechanism studies suggest that the active centers, originated from P-and S-doping, additively/synergistically catalyze the aerobic oxidation of benzylic alcohols but with different pathways. For the first time, catalytic centers stemming from S-doping were experimentally identified to be exocyclic S species (C-S-C, sulfur out of the carbon ring), which are different from those proposed for electrochemical oxygen reduction reactions (ORR) with a 4epathway and oxygen evaluation reactions (OER). Notably, all the catalytic sites from both P and S doping share a similar "protruding out" pyramid structure, which is in contrast to the planar structure of the catalytic sites in Nor B-doped graphitic materials. The unique geometric structure of the catalytic sites can minimize substrate steric hindrance effects, endowing the P, S co-doped catalysts with a wide substrate scope and functional group tolerance. Furthermore, the unambiguous distinguishment of the catalytic sites from those in OER and ORR provides valuable guidance for designing and developing carbon materials with controlled active sites to satisfy different catalytic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.