Despite the tremendous increase in omics data generated by modern sequencing technologies, their analysis can be tricky and often requires substantial expertise in bioinformatics. To address this concern, we have developed a user-friendly pipeline to analyze (cancer) genomic data that takes in raw sequencing data (FASTQ format) as input and outputs insightful statistics. Our iCOMIC toolkit pipeline featuring many independent workflows is embedded in the popular Snakemake workflow management system. It can analyze whole-genome and transcriptome data and is characterized by a user-friendly GUI that offers several advantages, including minimal execution steps and eliminating the need for complex command-line arguments. Notably, we have integrated algorithms developed in-house to predict pathogenicity among cancer-causing mutations and differentiate between tumor suppressor genes and oncogenes from somatic mutation data. We benchmarked our tool against Genome In A Bottle benchmark dataset (NA12878) and got the highest F1 score of 0.971 and 0.988 for indels and SNPs, respectively, using the BWA MEM—GATK HC DNA-Seq pipeline. Similarly, we achieved a correlation coefficient of r = 0.85 using the HISAT2-StringTie-ballgown and STAR-StringTie-ballgown RNA-Seq pipelines on the human monocyte dataset (SRP082682). Overall, our tool enables easy analyses of omics datasets, significantly ameliorating complex data analysis pipelines.
Despite the tremendous increase in omics data generated by modern sequencing technologies, their analysis can be tricky and often requires substantial expertise in bioinformatics. To address this concern, we have developed a user-friendly pipeline to analyze (cancer) genomic data that takes in raw sequencing data (FASTQ format) as input and outputs insightful statistics on the nature of the data. Our iCOMIC toolkit pipeline can analyze whole-genome and transcriptome data and is embedded in the popular Snakemake workflow management system. iCOMIC is characterized by a user-friendly GUI that offers several advantages, including executing analyses with minimal steps, eliminating the need for complex command-line arguments. The toolkit features many independent core workflows for both whole genomic and transcriptomic data analysis. Even though all the necessary, well-established tools are integrated into the pipeline to enable "out-of-the-box" analysis, we provide the user with the means to replace modules or alter the pipeline as needed. Notably, we have integrated algorithms developed in-house for predicting driver and passenger mutations based on mutational context and tumor suppressor genes and oncogenes from somatic mutation data. We benchmarked our tool against Genome In A Bottle (GIAB) benchmark dataset (NA12878) and got the highest F1 score of 0.971 and 0.988 for indels and SNPs, respectively, using the BWA MEM - GATK HC DNA-Seq pipeline. Similarly, we achieved a correlation coefficient of r=0.85 using the HISAT2-StringTie-ballgown and STAR-StringTie-ballgown RNA-Seq pipelines on the human monocyte dataset (SRP082682). Overall, our tool enables easy analyses of omics datasets, with minimal steps, significantly ameliorating complex data analysis pipelines. Availability: https://github.com/RamanLab/iCOMIC
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.