In healthcare industry, Neural Network has attained a milestone in solving many real-life classification problems varies from very simple to complex and from linear to non-linear. To improve the training process by reducing the training time, Adaptive Skipping Training algorithm named as Half of Threshold (HOT) has been proposed. To perform the fast classification and also to improve the computational efficiency such as accuracy, error rate, etc., the highlighted characteristics of proposed HOT algorithm has been integrated with Strassen's matrix multiplication algorithm and derived a novel, hybrid and computationally efficient algorithm for training and validating the neural network named as Strassen's Half of Threshold (SHoT) Training Algorithm. The experimental outcome based on the simulation demonstrated that the proposed SHOT algorithm outperforms both BPN and HOT algorithm in terms of training time and its efficiency on various dataset such as such as Hepatitis, SPeCT, Heart, Liver Disorders, Breast Cancer Wisconsin (Diagnostic), Drug Consumption, Cardiotocography, Splice-junction Gene Sequences and Thyroid Disease dataset that are extracted from Machine Learning Dataset Repository of UCI. It can be integrated with any type of supervised training algorithm.
Osteoporosis disease is caused by hormonal changes, vitamin D, and calcium deficiency. With current technologies, the identification of osteoporosis requires many tests with the support of medications. Bone mineral density is a typical measure implemented using a DEXA scan which can be very costly. Such high technology equipment is usually not accessible for remote people, and thus a low-cost screening system is very appealing. This article proposes an osteoporosis prediction system that effectively determines its possibility of occurrence based on essential factors such as smoking habits and calcium level so that the people at high risk can be referred to access the DEXA scanner. Our proposed system is implemented by an improved version of the artificial immune system, enabling care providers to take precautionary measures at the right time to avoid the early development of osteoporosis. The experiments demonstrated a promising result of 94% prediction accuracy that proved its usefulness in identifying people with potential osteoporosis in the future.
Flow state assessment is essential to understand the involvement of an individual in a particular task assigned. If there is no involvement in the task assigned then the individual in due course of time gets affected either by psychological or physiological illnesses. The National Crime Records Bureau (NCRB) statistics show that non-involvement in the task drive the individual to a depression state and subsequently attempt for suicide. Therefore, it is essential to determine the decrease in flow level at an earlier stage and take remedial steps to recover them. There are many invasive methods to determine the flow state, which is not preferred and the commonly used non-invasive method is the questionnaire and interview method, which is the subjective and retroactive method, and hence chance to fake the result is more. Hence, the main objective of our work is to design an efficient flow level measurement system that measures flow in an objective method and also determines real-time flow classification. The accuracy of classification is achieved by designing an Expert Active k-Nearest Neighbour (EAkNN) which can classify the individual flow state towards the task assigned into nine states using non-invasive physiological Electrocardiogram (ECG) signals. The ECG parameters are obtained during the performance of FSCWT. Thus this work is a combination of psychological theory, physiological signals and machine learning concepts. The classifier is designed with a modified voting rule instead of the default majority voting rule, in which the contribution probability of nearest points to new data is considered. The dataset is divided into two sets, training dataset 75%and testing dataset 25%. The classifier is trained and tested with the dataset and the classification efficiency is 95%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.