A measurement of the magnitude of the electric dipole moment of the electron (eEDM) larger than that predicted by the Standard Model (SM) of particle physics is expected to have a huge impact on the search for physics beyond the SM. Polar diatomic molecules containing heavy elements experience enhanced sensitivity to parity (P) and time-reversal (T)-violating phenomena, such as the eEDM and the scalar-pseudoscalar (S-PS) interaction between the nucleons and the electrons, and are thus promising candidates for measurements. The NL-eEDM collaboration is preparing an experiment to measure the eEDM and S-PS interaction in a slow beam of cold BaF molecules [P. Aggarwal et al., Eur. Phys. J. D 72, 197 (2018)]. Accurate knowledge of the electronic structure parameters, W d and Ws, connecting the eEDM and the S-PS interaction to the measurable energy shifts is crucial for the interpretation of these measurements. In this work, we use the finite field relativistic coupled cluster approach to calculate the W d and Ws parameters in the ground state of the BaF molecule. Special attention was paid to providing a reliable theoretical uncertainty estimate based on investigations of the basis set, electron correlation, relativistic effects, and geometry. Our recommended values of the two parameters, including conservative uncertainty estimates, are 3.13 ± 0.12 × 10 24 Hz e cm for W d and 8.29 ± 0.12 kHz for Ws.
The Pauli exclusion principle in quantum mechanics has a profound influence on the structure of matter and on interactions between fermions. Almost 30 years ago it was predicted that the Pauli exclusion principle could lead to a suppression of spontaneous emission, and only recently several experiments confirmed this phenomenon. Here we report that this so-called Pauli blockade not only affects incoherent processes but also, more generally, coherently driven systems. It manifests itself as an intriguing sub-Doppler narrowing of a doubly-forbidden transition profile in an optically trapped Fermi gas of 3He. By actively pumping atoms out of the excited state, we break the coherence of the excitation and lift the narrowing effect, confirming the influence of Pauli blockade on the transition profile. This insight into the interplay between quantum statistics and coherent driving is a promising development for future applications involving fermionic systems.
The Pauli exclusion principle in quantum mechanics has a profound influence on the structure of matter and on interactions between fermions. Almost 30 years ago it was predicted that the Pauli exclusion principle could lead to a suppression of spontaneous emission, and only recently several experiments 1-3 confirmed this phenomenon. Here we report that this so-called Pauli blockade not only affects incoherent processes but also, more generally, coherently driven systems. It manifests itself as an intriguing sub-Doppler narrowing of a doubly-forbidden transition profile in an optically trapped Fermi gas of 3 He. By actively pumping atoms out of the excited state, we break the coherence of the excitation and lift the narrowing effect, confirming the influence of Pauli blockade on the transition profile. This new insight into the interplay between quantum statistics and coherent driving is a promising development for future applications involving fermionic systems.The Pauli exclusion principle arises from the simple requirement of antisymmetrization of two-fermion wavefunctions under particle exchange 4 , but it has a remarkable impact on how our world is shaped. It determines the electronic structure of atoms, which dictates their chemical properties, and it gives rise to the Fermi energy of electron ensembles in solid state materials, lead-1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.