This study classified the strength of normal aggregate concrete (NC) and lightweight aggregate concrete (LC) into three levels (30, 45, and 60 MPa). In particular, the compressive strength, ultrasonic pulse velocity, and elastic modulus were measured and analyzed at the ages of 1, 3, 7, and 28 days to establish the correlation between the compressive strength and the ultrasonic pulse velocity and between the elastic modulus and the ultrasonic pulse velocity. In addition, this study proposed strength and elastic modulus prediction equations as functions of the ultrasonic pulse velocity. The developed equations were compared with previously proposed strength prediction equations. The results showed that the measured mechanical properties of NC tended to be higher at all ages than in LC. However, LC45 exhibited relatively high compressive strength compared to NC45. The relative mechanical properties of LC compared to NC were the highest at 45 MPa and the lowest at 60 MPa. The relative ultrasonic pulse velocity converged at all levels as the age increased. Moreover, the correlation between the compressive strength and the ultrasonic pulse velocity in LC exceeded that of NC, and in LC, the correlation coefficient decreased as the strength increased. The correlation coefficients between the elastic modulus and the ultrasonic pulse velocity were high at all levels except for LC45. Finally, this study proposed compressive strength and elastic modulus prediction equations as an exponential function of LC. The proposed equations outperformed the previously proposed strength prediction equations.
The effect of the thermal properties of aggregates on the mechanical properties of high-strength concrete was evaluated under loading and high-temperature conditions. For the concrete, granite was selected as a natural aggregate, and ash-clay and clay as lightweight aggregates. The mechanical properties of the concrete (stress–strain, compressive strength, elastic modulus, thermal strain, and transient creep) were evaluated experimentally under uniform heating from 20 to 700 °C while maintaining the load at 0, 20, and 40% of the compressive strength at room temperature. Experimental results showed that the concrete containing lightweight aggregates had better mechanical properties, such as compressive strength and elastic modulus, than that of the concrete with a granite aggregate at high temperature. In particular, the concrete containing lightweight aggregates exhibited high compressive strength (60–80% of that at room temperature) even at 700 °C. Moreover, the concrete containing granite exhibited a higher thermal strain than that containing lightweight aggregates. The influence of the binding force under loaded conditions, however, was found to be larger for the latter type. The transient creep caused by the loading was constant regardless of the aggregate type below 500 °C but increased more rapidly when the coefficient of the thermal expansion of the aggregate was above 500 °C.
In this study, the mechanical properties of normal concrete (NC) and lightweight concrete (LC) were measured upon exposure to high temperatures (20, 100, 200, 300, 500, and 700 °C). Then, analysis was conducted to predict the residual modulus of elasticity through ultrasonic pulse velocity. Crushed granite aggregate was mixed as the coarse aggregate for NC and coal-ash aggregate for LC. The effect of the water-to-binder (W/B) ratio (0.41, 0.33, and 0.28) on the mechanical properties (residual compressive strength, residual ultrasonic pulse velocity, residual modulus of elasticity, and stress–strain) of concrete was determined. The residual compressive strength, residual ultrasonic pulse velocity, and residual modulus of elasticity were higher for LC compared to NC. The correlation between the ultrasonic pulse velocity and residual modulus of elasticity was also analyzed, which yielded a high correlation coefficient (R2) at all levels. Finally, equations for predicting the residual modulus of elasticity using ultrasonic pulse velocity with R2 values of 0.94 and 0.91 were proposed for NC and LC, respectively.
Previous studies on the strength degradation of concrete subjected to high temperatures were analyzed. To analyze the effect of the coarse-aggregate type on strength degradation, data from previous studies were collected, and the coarse aggregate used, physical properties of the aggregate, and heating conditions were analyzed. The concrete types were classified into normal, heavyweight, and lightweight concrete. Their high-temperature characteristics were analyzed and evaluated according to the mixed coarse aggregate. Finally, the correlations derived from the analysis results were compared with the CEB Code. The analysis results were different for different concrete and coarse-aggregate types, and different tendencies from the CEB Code were observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.