SummaryRegulator of G-protein signaling (RGS) proteins contribute to G-protein signaling pathways as activators or repressors with GTPase-activating protein (GAP) activity. To characterize whether regulation of RGS proteins influences longevity in several species, we measured stress responses and lifespan of RGS-overexpressing and RGSlacking mutants. Reduced expression of Loco, a RGS protein of Drosophila melanogaster, resulted in a longer lifespan for both male and female flies, also exhibiting stronger resistance to three different stressors (starvation, oxidation, and heat) and higher manganese-containing superoxide dismutase (MnSOD) activity. In addition, this reduction in Loco expression increased fat content and diminished cAMP levels. In contrast, overexpression of both genomic and cDNA loco gene significantly shortened the lifespan with weaker stress resistance and lower fat content. Deletion analysis of the Loco demonstrated that its RGS domain is required for the regulation of longevity. Consistently, when expression of RGS14, mammalian homologue of Loco, was reduced in rat fibroblast cells, the resistance to oxidative stress increased with higher MnSOD expression. The changes of yeast Rgs2 expression, which shares a conserved RGS domain with the fly Loco protein, also altered lifespan and stress resistance in Saccharomyces cerevisiae. Here, we provide the first evidence that RGS proteins with GAP activity affect both stress resistance and longevity in several species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.