Abstract:The goal of this research is to investigate the factors that affect carsharing demand. As a proxy for carsharing demand, the number of (booking) transactions made by carsharing users is counted based on the data from one of the two major carsharing operators in Seoul, Korea. In order to identify the factors influencing station-based carsharing usage, multiple linear regression modeling was performed with the number of carsharing transactions as a dependent variable and with the three groups of independent variables: Built environment, demographic, and transportation variables. Instead of using the locations of the pods, this study uses the residential locations of carsharing users who made transactions, and the final result analyzing 420 districts shows that six variables significantly influence carsharing usage. Carsharing demand is high in an area where a higher proportion of building floor area is used for business, and which has a higher proportion of young residents in their 20s and 30s. It can also be predicted that the area with more registered cars and less subway entrances will show higher carsharing demand. The analysis result also suggests that providing additional carsharing pods, especially pods that utilize city owned public parking facilities, will help promote carsharing usage. This research establishes a basis for future research efforts to forecast carsharing demand and to identify areas with high potential, especially in major Asian cities.
Automated Vehicles (AVs) are attracting attention as a safer mobility option thanks to the recent advancement of various sensing technologies that realize a much quicker Perception–Reaction Time than Human-Driven Vehicles (HVs). However, AVs are not entirely free from the risk of accidents, and we currently lack a systematic and reliable method to improve AV safety functions. The manual composition of accident scenarios does not scale. Simulation-based methods do not fully cover the peculiar AV accident patterns that can occur in the real world. Artificial Intelligence (AI) techniques are employed to identify the moments of accidents from ego-vehicle videos. However, most AI-based approaches fall short in accounting for the probable causes of the accidents. Neither of these AI-driven methods offer details for authoring accident scenarios used for AV safety testing. In this paper, we present a customized Vision Transformer (named ViT-TA) that accurately classifies the critical situations around traffic accidents and automatically points out the objects as probable causes based on an Attention map. Using 24,740 frames from Dashcam Accident Dataset (DAD) as training data, ViT-TA detected critical moments at Time-To-Collision (TTC) ≤ 1 s with 34.92 higher accuracy than the state-of-the-art approach. ViT-TA’s Attention map highlighting the critical objects helped us understand how the situations unfold to put the hypothetical ego vehicles with AV functions at risk. Based on the ViT-TA-assisted interpretation, we systematized the composition of Functional scenarios conceptualized by the PEGASUS project for describing a high-level plan to improve AVs’ capability of evading critical situations. We propose a novel framework for automatically deriving Logical and Concrete scenarios specified with 6-Layer situational variables defined by the PEGASUS project. We believe our work is vital towards systematically generating highly reliable and trustworthy safety improvement plans for AVs in a scalable manner.
Automated Vehicles (AVs) are under development to reduce traffic accidents to a great extent. Therefore, safety will play a pivotal role to determine their social acceptability. Despite the fast development of AVs technologies, related accidents can occur even in an ideal environment. Therefore, measures to prevent traffic accidents in advance are essential. This study implemented a traffic accident context analysis based on the Deep Neural Network (DNNs) technique to design a Preventive Automated Driving System (PADS). The DNN-based analysis reveals that when a traffic accident occurs, the offender’s injury can be predicted with 85% accuracy and the victim’s case with 67%. In addition, to find out factors that decide the degree of injury to the offender and victim, a random forest analysis was implemented. The vehicle type and speed were identified as the most important factors to decide the degree of injury of the offender, while the importance for the victim is ordered by speed, time of day, vehicle type, and day of the week. The PADS proposed in this study is expected not only to contribute to improve the safety of AVs, but to prevent accidents in advance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.