In this paper, the stability and stabilization issues for a class of delayed neural networks with time-varying hybrid impulses are investigated. The hybrid effect of two types of impulses including both stabilizing and destabilizing impulses is considered simultaneously in the analysis of systems. To characterize the occurrence features of impulses, the concepts of average impulse interval and average impulse strength are employed. Based on the analysis of stability, a pinning impulsive controller which can ensure the global exponential stability of the studied neural networks is designed by pinning a small fraction of neurons. Finally, two numerical examples are given to illustrate the effectiveness of the proposed control schemes for delayed neural networks with hybrid impulses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.