Recessive mutations in LPIN1, which encodes a phosphatidate phosphatase enzyme, are a frequent cause of severe rhabdomyolysis in childhood. Hence, we sequenced the 19 coding exons of the gene in eight patients with recurrent hereditary myoglobinuria from four unrelated families in Jordan. The long-term goal is to facilitate molecular genetic diagnosis without the need for invasive procedures such as muscle biopsies. Three different mutations were detected, including the novel missense mutation c.2395G>C (Gly799Arg), which was found in two families. The two other mutations, c.2174G>A (Arg725His) and c.1162C>T (Arg388X), have been previously identified, and were found to cosegregate with the disease phenotype in the other two families. Intriguingly, patients homozygous for Arg725His were also homozygous for the c.1828C>T (Pro610Ser) polymorphism, and were exercise-intolerant between myoglobinuria episodes. Notably, patients homozygous for Arg388X were also homozygous for the c.2250G>C silent variant (Gly750Gly). Taken together, the data provide family-based evidence linking hereditary myoglobinuria to pathogenic variations in the C-terminal lipin domain of the enzyme. This finding highlights the functional significance of this domain in the absence of structural information. This is the first analysis of LPIN1 in myoglobinuria patients of Jordanian origin, and the fourth such analysis worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.