<p style='text-indent:20px;'>This paper deals with the following nonlinear fractional equation with an external source term</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \label{eqS0.1} (-\Delta)^{s}u +u = K(x)u^{p}+f(x), \; u>0, \; x\in{\Bbb R}^N, \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ N>2s $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ 0<s<1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ 1<p<2_{\ast}(s)-1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ 2_{\ast}(s) = \frac{2N}{N-2s} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ K(x) $\end{document}</tex-math></inline-formula> is a continuous function and <inline-formula><tex-math id="M6">\begin{document}$ f\in L^{2}({\Bbb R}^{N})\cap L^{\infty}({\Bbb R}^{N}) $\end{document}</tex-math></inline-formula>. Using a Lyapunov-Schmidt reduction scheme, we prove that the equation admits <inline-formula><tex-math id="M7">\begin{document}$ k $\end{document}</tex-math></inline-formula>-peak solutions for any integer <inline-formula><tex-math id="M8">\begin{document}$ k>0 $\end{document}</tex-math></inline-formula> if <inline-formula><tex-math id="M9">\begin{document}$ f $\end{document}</tex-math></inline-formula> is small and <inline-formula><tex-math id="M10">\begin{document}$ K(x) $\end{document}</tex-math></inline-formula> satisfies some additional assumptions at infinity. The main difficulty is to improve the estimate of the remainder obtained in the reduction process.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.