Trichogramma species and strains differ significantly in host specificity and performance. Nine Trichogramma strains, six of them collected from paddy fields in the Greater Mekong Subregion, were evaluated for performance on eggs of the striped stem borer, Chilo suppressalis (Walker), in both laboratory and field tests to determine potential Trichogramma strains that can be used in an inundative release in an integrated pest management program. In the laboratory glass vial tests, all strains showed higher parasitism rates on 0-24-h eggs than on the two older age groups (24-48 and 48-72 h). Wasp emergence rate was also higher from parasitized 0-24-h striped stem borer eggs, while Trichogramma immature duration was significantly prolonged on 0-24-h striped stem borer eggs. Parasitism rates differed among Trichogramma strains, with Trichogramma chilonis Ishii CJ strain showing significantly higher parasitism rate than any other strains. In the field tests, parasitism of sentinel striped stem borer eggs by Trichogramma strains released at 50,000, 100,000, and 200,000 wasps per hectare was low, with marginal yet significant differences between strains. The highest parasitism was achieved by T. chilonis CJ strain at the high and medium release rates. Hence, it can be concluded that T. chilonis CJ strain released at 100,000 wasps per hectare may be a cost-effective control tactic for field releases targeting striped stem borer.
Field‐scale experiments were conducted in 2005 and 2006 on three cooperative farms in DPR Korea to evaluate the potential of Trichogramma ostriniae releases to reduce tunnel damage of maize plants caused by the Asian corn borer, Ostrinia furnacalis, and increase grain maize production. When released three times against the first generation of the pest at nominal densities of about 150 000 parasitoids/ha each and another two times against the second generation (in total 750 000 parasitoids/ha), significant effects on all assessed parameters were obtained. In the release plots, a mean parasitism rate of 61% was found, significantly different from the 21.8% found in non‐release (control) plots. Furthermore, the number of larvae was significantly reduced in release plots compared to control plots by 63.5% over all farms and both study years. Feeding tunnels caused by the Asian corn borer were reduced in length in the release plots by 64.1%. Finally, we found that fresh yield of maize ears was significantly higher in the release plots compared to control plots. For all farms and both years, the increase in fresh yield was 28.2%. In this paper we are for the first time presenting data in an international journal on the effect of Trichogramma releases on maize production in DPRK. Although T. ostriniae releases at high host densities observed in the present study were not able to completely suppress damage by the Asian corn borer, the yield increase of more than 1 ton/ha indicate that T. ostriniae releases may contribute significantly to stabilize the country’s maize production as well as support community efforts to avoid reversion into a food emergency situation.
The newly launched Fengyun-3D (FY-3D) satellite carried a wide-field auroral imager (WAI) that was developed by Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences (CIOMP), which will provide a large field of view (FOV), high spatial resolution, and broadband ultraviolet images of the aurora and the ionosphere by imaging the N 2 LBH bands of emissions. The WAI consists of two identical cameras, each with an FOV of 68° in the along-track direction and 10° in the cross-track direction. The two cameras are tilted relative to each other to cover a fan-shaped field of size 130° × 10°. Each camera consists of an unobstructed four-mirror anastigmatic optical system, a BaF 2 filter, and a photon-counting imaging detector. The spatial resolution of WAI is ~10 km at the nadir point at a reference height of 110 km above the Earth’s surface. The sensitivity is >0.01 counts s −1 Rayleigh −1 pixel −1 (140–180 nm) for both cameras, which is sufficient for mapping the boundaries and the fine structures of the auroral oval during storms/substorms. Based on the tests and calibrations that were conducted prior to launch, the data processing algorithm includes photon signal decoding, geometric distortion correction, photometric correction, flat-field correction, line-of-sight projection and correction, and normalization between the two cameras. Preliminarily processed images are compared with DMSP SSUSI images. The agreement between the images that were captured by two instruments demonstrates that the WAI and the data processing algorithm operate normally and can provide high-quality scientific data for future studies on auroral dynamics.
We present a case study for the global extreme-ultraviolet (EUV) wave and its chromospheric counterpart the Moreton-Ramsey Wave associated with the second X-class flare in Solar Cycle 25 and a halo coronal mass ejection (CME). The EUV wave was observed in the Hα and EUV passbands with different characteristic temperatures. In the 171 Å and 193/195 Å images, the wave propagates circularly with an initial velocity of 600–720 km s−1 and a deceleration of 110–320 m s−2. The local coronal plasma is heated from log(T/K) ≈ 5.9 to log(T/K) ≈ 6.2 during the passage of the wave front. The Hα and 304 Å images also reveal signatures of wave propagation with a velocity of 310–540 km s−1. With multiwavelength and dual-perspective observations, we found that the wave front likely propagates forwardly inclined to the solar surface with a tilt angle of ∼53°.2. Our results suggest that this EUV wave is a fast-mode magnetohydrodynamic wave or shock driven by the expansion of the associated CME, whose wave front is likely a dome-shaped structure that could impact the upper chromosphere, transition region, and corona.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.