The mechanism responsible for immunoglobulin class switch recombination is unknown. Previous work has shown that class switch sequences have the unusual property of forming RNA-DNA hybrids when transcribed in vitro. Here we show that the RNA-DNA hybrid structure that forms in vitro is an R-loop with a displaced guanine (G)-rich strand that is single-stranded. This R-loop structure exists in vivo in B cells that have been stimulated to transcribe the gamma3 or the gamma2b switch region. The length of the R-loops can exceed 1 kilobase. We propose that this distinctive DNA structure is important in the class switch recombination mechanism
Activation-induced deaminase (AID) is required for both immunoglobulin class switch recombination and somatic hypermutation. AID is known to deaminate cytidines in single-stranded DNA, but the relationship of this step to the class switch or somatic hypermutation processes is not entirely clear. We have studied the activity of a recombinant form of the mouse AID protein that was purified from a baculovirus expression system. We find that the length of the single-stranded DNA target is critical to the action of AID at the Cs positioned anywhere along the length of the DNA. The DNA sequence surrounding a given C influences AID deamination efficiency. AID preferentially deaminates Cs in the WRC motif, and additionally has a small but consistent preference for purine at the position after the WRC, thereby favoring WRCr (the lowercase r corresponds to the smaller impact on activity).
R-loops have been described in vivo at the immunoglobulin class switch sequences and at prokaryotic and mitochondrial origins of replication. However, the biochemical mechanism and determinants of R-loop formation are unclear. We find that R-loop formation is nearly eliminated when RNase T 1 is added during transcription but not when it is added afterward. Hence, rather than forming simply as an extension of the RNA-DNA hybrid of normal transcription, the RNA must exit the RNA polymerase and compete with the nontemplate DNA strand for an R-loop to form. R-loops persist even when transcription is done in Li ؉ or Cs ؉ , which do not support G-quartet formation. Hence, R-loop formation does not rely on G-quartet formation. R-loop formation efficiency decreases as the number of switch repeats is decreased, although a very low level of R-loop formation occurs at even one 49-bp switch repeat. R-loop formation decreases sharply as G clustering is reduced, even when G density is kept constant. The critical level for R-loop formation is approximately the same point to which evolution drove the G clustering and G density on the nontemplate strand of mammalian switch regions. This provides an independent basis for concluding that the primary function of G clustering, in the context of high G density, is R-loop formation.R-loops are nucleic acid structures in which an RNA strand displaces one strand of DNA for a limited length in an otherwise duplex DNA molecule. R-loops were named by analogy to D-loops, which is where all three strands are DNA. R-loops form in vivo at sequences that generate a G-rich transcript at the prokaryotic origins of replication (20), mitochondrial origins of replication (18), and mammalian immunoglobulin (Ig) class switch sequences (reviewed in reference 45).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.