Research Highlights: Phenotypic changes and expression profiles, phylogeny, conserved motifs, and expression correlations of NAC (NAM, ATAF1, ATAF2 and CUC2) transcription factors (TFs) in blueberry genome were detected under drought stress, and the expression patterns and functions of 12 NACs were analyzed. Background and Objectives: Blueberry is an important shrub species with a high level of flavonoids in fruit, which are implicated in a broad range of health benefits. However, the molecular mechanism of this shrub species in response to drought stress still remains elusive. NAC TFs widely participate in stress tolerance in many plant species. The characterization and expression profiles of NAC TFs were analyzed on the basis of genome data in blueberry when subjected to drought stress. Materials and Methods: Combined with the analysis of chlorophyll a fluorescence and endogenous phytohormones, the phenotypic changes of blueberry under drought stress were observed. The phylogenetic tree, conserved motifs, differently expressed genes, and expression correlation were determined by means of multiple bioinformatics analysis. The expression profiles of NACs in different organs were examined and compared through RNA-seq and qRT-PCR assay. Results: The chlorophyll a fluorescence parameters φPo, φEo, φRo, and PIabs of leaves were significantly inhibited under drought stress. ABA (abscisic acid) content noticeably increased over the duration of drought, whereas GA3 (gibberellic acid) and IAA (indole acetic acid) content decreased continuously. A total of 158 NACs were identified in blueberry genome and 62 NACs were differently expressed in leaf and root of blueberry under drought stress. Among them, 14 NACs were significantly correlated with the expression of other NAC genes. Conclusions: Our results revealed the phenotypic changes of this shrub under drought stress and linked them with NAC TFs, which are potentially involved in the process of response to drought stress.
Background Blueberry (Vaccinium corymbosum L.) is an important species with a high content of flavonoids in fruits. As a perennial shrub, blueberry is characterized by shallow-rooted property and susceptible to drought stress. MYB transcription factor was reported to be widely involved in plant response to abiotic stresses, however, the role of MYB family in blueberry responding to drought stress remains elusive. Results In this study, we conducted a comprehensive analysis of VcMYBs in blueberry based on the genome data under drought stress, including phylogenetic relationship, identification of differentially expressed genes (DEGs), expression profiling, conserved motifs, expression correlation and protein-protein interaction prediction, etc. The results showed that 229 non-redundant MYB sequences were identified in the blueberry genome, and divided into 23 subgroups. A total of 102 MYB DEGs with a significant response to drought stress were identified, of which 72 in leaves and 69 in roots, and 8 differential expression genes with a > 20-fold change in the level of expression. 17 DEGs had a higher expression correlation with other MYB members. The interaction partners of the key VcMYB proteins were predicted by STRING analysis and in combination with physiological and morphological observation. 10 key VcMYB genes such as VcMYB8, VcMYB102 and VcMYB228 were predicted to be probably involved in reactive oxygen species (ROS) pathway, and 7 key VcMYB genes (VcMYB41, VcMYB88 and VcMYB100, etc..) probably participated in leaf regulation under drought treatment. Conclusions Our studies provide a new understanding of the regulation mechanism of VcMYB family in blueberry response to drought stress, and lay fundamental support for future studies on blueberry grown in regions with limited water supply for this crop.
Camellia (C.) oleifera Abel. is an evergreen small arbor with high economic value for producing edible oil that is well known for its high level of unsaturated fatty acids. The yield formation of tea oil extracted from fruit originates from the leaves, so leaf senescence, the final stage of leaf development, is an important agronomic trait affecting the production and quality of tea oil. However, the physiological characteristics and molecular mechanism underlying leaf senescence of C. oleifera are poorly understood. In this study, we performed physiological observation and de novo transcriptome assembly for annual leaves and biennial leaves of C. oleifera. The physiological assays showed that the content of chlorophyll (Chl), soluble protein, and antioxidant enzymes including superoxide dismutase, peroxide dismutase, and catalase in senescing leaves decreased significantly, while the proline and malondialdehyde concentration increased. By analyzing RNA-Seq data, we identified 4645 significantly differentially expressed unigenes (DEGs) in biennial leaves with most associated with flavonoid and phenylpropanoid biosynthesis and phenylalanine metabolism pathways. Among these DEGs, 77 senescence-associated genes (SAGs) including NOL, ATAF1, MDAR, and SAG12 were classified to be related to Chl degradation, plant hormone, and oxidation pathways. The further analysis of the 77 SAGs based on the Spearman correlation algorithm showed that there was a significant expression correlation between these SAGs, suggesting the potential connections between SAGs in jointly regulating leaf senescence. A total of 162 differentially expressed transcription factors (TFs) identified during leaf senescence were mostly distributed in MYB (myeloblastosis), ERF (Ethylene-responsive factor), WRKY, and NAC (NAM, ATAF1/2 and CUCU2) families. In addition, qRT-PCR analysis of 19 putative SAGs were in accordance with the RNA-Seq data, further confirming the reliability and accuracy of the RNA-Seq. Collectively, we provide the first report of the transcriptome analysis of C. oleifera leaves of two kinds of age and a basis for understanding the molecular mechanism of leaf senescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.