Aiming at the non-linear characteristics of bearing vibration signals as well as the complexity of condition-indicating information distribution in the signals, a new rolling element bearing fault diagnosis method based on hierarchical fuzzy entropy and support vector machine is proposed in this paper. By incorporating the advantages of both the concept of fuzzy sets and the hierarchical decomposition of hierarchical entropy, hierarchical fuzzy entropy is developed to extract the fault features from the bearing vibration signals, which can provide more useful information reflecting bearing working conditions than hierarchical entropy. After feature extraction with hierarchical fuzzy entropy, a multi-class support vector machine is trained and then employed to fulfill an automated bearing fault diagnosis. The experimental results demonstrate that the proposed approach can identify different bearing fault types as well as severities precisely.
Multi-scale fuzzy entropy (MFE) is a recently developed non-linear dynamic parameter for measuring the complexity of vibration signals of rolling element bearing over different scales. However, the calculation of fuzzy entropy (FuzzyEn) in each scale ignores the sequence’s global characteristics while the bearing vibration signals’ global fluctuation may vary as the bearing runs under different states. Therefore, in this paper, the multi-scale global fuzzy entropy (MGFE) method is put forward for extracting the fault features from the bearing vibration signals. After the feature extraction, multiple class feature selection (MCFS) method is introduced to select the most informative features from the high-dimensional feature vector. Then, a new rolling element bearing fault diagnosis approach is proposed based on MGFE, MCFS and support vector machine (SVM). The experimental results indicate that the proposed approach can effectively fulfill the fault diagnosis of rolling element bearing and has good classification performance.
A new fault feature extraction method for rolling element bearing is put forward in this paper based on the adaptive local iterative filtering (ALIF) algorithm and the modified fuzzy entropy. Due to the bearing vibration signals’ non-stationary and nonlinear characteristics, the ALIF method, which is a new approach for the analysis of the non-stationary signals, is used to decompose the original vibration signals into a series of mode components. Fuzzy entropy (FuzzyEn) is a nonlinear dynamic parameter for measuring the signals’ complexity. However, it only emphasizes the signals’ local characteristics while neglecting its global fluctuation. Considering the global fluctuation of bearing vibration signals will change with the bearing working condition varying, we modified the FuzzyEn. The modified FuzzyEn (MFuzzyEn) of the first few modes obtained by the ALIF is utilized to form the fault feature vectors. Subsequently, the corresponding feature vectors are input into the multi-class SVM classifier to accomplish the bearing fault identification automatically. The experimental analysis demonstrates that the presented ALIF-MFuzzyEn-SVM approach can effectively recognize the different fault categories and different levels of bearing fault severity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.