A quick and accurate method for investigating damage to buildings is required for proper disaster response. In this study, we investigated whether building damage can be grasped by applying Deep Learning, which is one of machine learning methods, to aerial and local photo
Collapsed buildings should be detected with the highest priority during earthquake emergency response, due to the associated fatality rates. Although deep learning-based damage detection using vertical aerial images can achieve high performance, as depth information cannot be obtained, it is difficult to detect collapsed buildings when their roofs are not heavily damaged. Airborne LiDAR can efficiently obtain the 3D geometries of buildings (in the form of point clouds) and thus has greater potential to detect various collapsed buildings. However, there have been few previous studies on deep learning-based damage detection using point cloud data, due to a lack of large-scale datasets. Therefore, in this paper, we aim to develop a dataset tailored to point cloud-based building damage detection, in order to investigate the potential of point cloud data in collapsed building detection. Two types of building data are created: building roof and building patch, which contains the building and its surroundings. Comprehensive experiments are conducted under various data availability scenarios (pre–post-building patch, post-building roof, and post-building patch) with varying reference data. The pre–post scenario tries to detect damage using pre-event and post-event data, whereas post-building patch and roof only use post-event data. Damage detection is implemented using both basic and modern 3D point cloud-based deep learning algorithms. To adapt a single-input network, which can only accept one building’s data for a prediction, to the pre–post (double-input) scenario, a general extension framework is proposed. Moreover, a simple visual explanation method is proposed, in order to conduct sensitivity analyses for validating the reliability of model decisions under the post-only scenario. Finally, the generalization ability of the proposed approach is tested using buildings with different architectural styles acquired by a distinct sensor. The results show that point cloud-based methods can achieve high accuracy and are robust under training data reduction. The sensitivity analysis reveals that the trained models are able to locate roof deformations precisely, but have difficulty recognizing global damage, such as that relating to the roof inclination. Additionally, it is revealed that the model decisions are overly dependent on debris-like objects when surroundings information is available, which leads to misclassifications. By training on the developed dataset, the model can achieve moderate accuracy on another dataset with different architectural styles without additional training.
This study demonstrates the use of multi-temporal LiDAR data to extract collapsed buildings and to monitor their removal process in Minami-Aso village, Kumamoto prefecture, Japan, after the April 2016 Kumamoto earthquake. By taking the difference in digital surface models (DSMs) acquired at pre- and post-event times, collapsed buildings were extracted and the results were compared with damage survey data by the municipal government and aerial optical images. Approximately 40% of severely damaged buildings showed a reduction in the average height within a reduced building footprint between the pre- and post-event DSMs. Comparing the removal process of buildings in the post-event periods with the damage classification result from the municipal government, the damage level was found to affect judgements by the owners regarding demolition and removal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.