During radiotherapy treatment for thoracic and abdomen cancers, for example, lung cancers, respiratory motion moves the target tumor and thus badly affects the accuracy of radiation dose delivery into the target. A real-time image-guided technique can be used to monitor such lung tumor motion for accurate dose delivery, but the system latency up to several hundred milliseconds for repositioning the radiation beam also affects the accuracy. In order to compensate the latency, neural network prediction technique with real-time retraining can be used. We have investigated real-time prediction of 3D time series of lung tumor motion on a classical linear model, perceptron model, and on a class of higher-order neural network model that has more attractive attributes regarding its optimization convergence and computational efficiency. The implemented static feed-forward neural architectures are compared when using gradient descent adaptation and primarily the Levenberg-Marquardt batch algorithm as the ones of the most common and most comprehensible learning algorithms. The proposed technique resulted in fast real-time retraining, so the total computational time on a PC platform was equal to or even less than the real treatment time. For one-second prediction horizon, the proposed techniques achieved accuracy less than one millimeter of 3D mean absolute error in one hundred seconds of
total treatment time.
In this paper, the authors presented a feasibility study of tracking tumor boundary in EPID images by using a LSM-based algorithm. Experimental results conducted on phantom and clinical EPID images demonstrated the effectiveness of the tracking algorithm for visible tumor target. Compared with previous tracking methods, the authors' algorithm has the potential to improve the tracking accuracy in radiation therapy. In addition, real-time tumor boundary information within the irradiation field will be potentially useful for further applications, such as adaptive beam delivery, dose evaluation.
Markerless tracking of respiration-induced tumor motion in kilo-voltage (kV) fluoroscopic image sequence is still a challenging task in real time image-guided radiation therapy (IGRT). Most of existing markerless tracking methods are based on a template matching technique or its extensions that are frequently sensitive to non-rigid tumor deformation and involve expensive computation. This paper presents a kernel-based method that is capable of tracking tumor motion in kV fluoroscopic image sequence with robust performance and low computational cost. The proposed tracking system consists of the following three steps. To enhance the contrast of kV fluoroscopic image, we firstly utilize a histogram equalization to transform the intensities of original images to a wider dynamical intensity range. A tumor target in the first frame is then represented by using a histogram-based feature vector. Subsequently, the target tracking is then formulated by maximizing a Bhattacharyya coefficient that measures the similarity between the tumor target and its candidates in the subsequent frames. The numerical solution for maximizing the Bhattacharyya coefficient is performed by a mean-shift algorithm. The proposed method was evaluated by using four clinical kV fluoroscopic image sequences. For comparison, we also implement four conventional template matching-based methods and compare their performance with our proposed method in terms of the tracking accuracy and computational cost. Experimental results demonstrated that the proposed method is superior to conventional template matching-based methods.
For prostate, MLC tracking was slightly better without prediction than with linear Kalman filter prediction. For lung, the TVSAR prediction algorithm performed best. Dynamic alignment of the collimator with the dominant motion axis was the most efficient MLC tracking improvement except for lung tracking with the low modulation VMAT plan, where jaw tracking was slightly better.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.