Carbon monoxide (CO), a byproduct of heme catalysis by heme oxygenases, has been shown to exert anti-inflammatory effects. This study examines the cytoprotective efficacy of inhaled CO during intestinal cold ischemia/reperfusion injury associated with small intestinal transplantation. Orthotopic syngenic intestinal transplantation was performed in Lewis rats after 6 hours of cold preservation in University of Wisconsin solution. Three groups were examined: normal untreated controls, control intestinal transplant recipients kept in room air, and recipients exposed to CO (250 ppm) for 1 hour before and 24 hours after surgery. In air grafts, mRNA levels for interleukin-6, cyclooxygenase-2, intracellular adhesion molecule (ICAM-1), and inducible nitric oxide synthase rapidly increased after intestinal transplant. Histopathological analysis revealed severe mucosal erosion, villous congestion, and inflammatory infiltrates. CO effectively blocked an early up-regulation of these mediators, showed less severe histopathological changes, and resulted in significantly improved animal survival of 92% from 58% in air-treated controls. CO also significantly reduced mRNA for proapoptotic Bax, while it up-regulated anti-apoptotic Bcl-2. These changes in CO-treated grafts correlated with well-preserved CD31(+) vascular endothelial cells, less frequent apoptosis/necrosis in intestinal epithelial and capillary endothelial cells, and improved graft tissue blood circulation. Protective effects of CO in this study were mediated via soluble guanylyl cyclase, because 1H-(1,2,4)oxadiazole (4,3-alpha) quinoxaline-1-one (soluble guanylyl cyclase inhibitor) completely reversed the beneficial effect conferred by CO. Perioperative CO inhalation at a low concentration resulted in protection against ischemia/reperfusion injury to intestinal grafts with prolonged cold preservation.
Both carbon monoxide (CO) and biliverdin, products of heme degradation by heme oxygenase, have been shown to attenuate ischemia/reperfusion (I/R) injury. We hypothesized in this study that dual-treatment with CO and biliverdin would induce enhanced protective effects against cold I/R injury. Heterotopic heart and orthotopic kidney transplantation were performed in syngeneic Lewis rats after 24-h cold preservation in UW solution. While monotherapy with CO (20 ppm) or biliverdin (50 mg/kg, ip) did not alter the survival of heart grafts, dual-treatment increased survival to 80% from 0% in untreated recipients, with a significant decrease of myocardial injury and improved cardiac function. Similarly, dual-treatment significantly improved glomerular filtration rates of renal grafts and prolonged recipient survival compared to untreated controls. I/R injury-induced up-regulation of pro-inflammatory mediators (e.g. TNF-a , iNOS) and extravasation of inflammatory infiltrates were significantly less with dual-treatment than untreated controls. In addition, dual-treatment was effective in decreasing lipid peroxidation and improving graft blood flow through the distinctive action of biliverdin and CO, respectively. The study shows that the addition of byproducts of heme degradation with different mechanisms of action provides enhanced protection against transplant-associated cold I/R injury of heart and kidney grafts.
Carbon monoxide (CO), a product of heme metabolism by heme oxygenases, is known to impart protection against oxidative stress. We hypothesized that CO would protect ischemia-reperfusion (I/R) injury of transplanted organs, and the efficacy of CO was studied in the rat kidney transplantation model. A Lewis rat kidney graft, preserved in University of Wisconsin solution at 4 degrees C for 24 h, was orthotopically transplanted into syngeneic rats. Recipients were maintained in room air or exposed to CO (250 ppm) in air for 1 h before and 24 h after transplantation. Animals were killed 1, 3, 6, and 24 h after transplantation to assess efficacy of inhaled CO. Rapid upregulation of mRNA for IL-6, IL-1beta, TNF-alpha, ICAM-1, heme oxygenase-1, and inducible nitric oxide synthase was observed within 3 h after transplantation in the control grafts of air-exposed recipients, associating with histopathological evidences of acute tubular necrosis, interstitial hemorrhage, and edema. In contrast, the increase of inflammatory mediators was markedly inhibited in kidney grafts of CO-treated recipients, which correlated with improved renal cortical blood flow. Further detailed morphological analyses revealed that CO preserved the glomerular vascular architecture and podocyte viability with less apoptosis of tubular epithelial cells and less ED1(+) macrophage infiltration. CO inhalation resulted in improved serum creatinine levels and clearance, and animal survival was significantly improved with CO to 60.5 from 25 days in untreated controls. The study demonstrates that exposure of kidney graft recipients to CO at a low concentration can impart significant protective effects against renal I/R injury and improve function of renal grafts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.