Fuel film in the gasoline direct injection injector tip, or so-called nozzle tip wetting, has been found to be an important contributor of particle emissions. Attempts have been made to reduce the nozzle tip wetting by optimizing nozzle geometry designs. However, the inherent mechanism of the nozzle tip wetting formation and its link with nozzle internal flow is still unclear yet due to the lack of direct observations. To overcome this insufficiency, the nozzle internal flow and the formation process of the nozzle tip wetting were visualized in the real-scale aluminum nozzles using the X-ray phase-contrast technique. Results showed that the needle bouncing, injection pressure, and hole configuration affect the formation of the nozzle tip wetting, while the influence of needle bouncing is the most critical. A further study was conducted to examine the effect of nozzle counterbore diameter on the nozzle tip wetting. It was found that with an increase in counterbore diameter, the nozzle tip wetting slightly increased first and then decreased sharply after the counterbore diameter exceeded 0.40 mm. The mechanisms of the aforementioned phenomena were discussed in detail, which can contribute to the better understandings and control strategies of nozzle tip wetting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.