Endoplasmic reticulum (ER) stress has been shown to participate in many disease pathologies. Although recent reports have demonstrated that ER stress in chondrocytes is present in human osteoarthritis (OA), its role in the pathology of cartilage degeneration, such as chondrocyte apoptosis, remains unclear. In the present study, we investigated the expression of phosphorylated PERK (pPERK), ubiquitin (Ub), GRP78, CHOP, phosphorylated JNK (pJNK) and cleaved caspase-3 (C-CASP3) and the mRNA splicing of XBP1 (XBP1 splicing) in human OA cartilage by immunohistochemistry and RT-PCR. Additionally, human chondrocytes were treated with several concentrations of tunicamycin, an ER stress inducer, to assess the impact of ER stress on the mRNA expression of CHOP, XBP1 splicing and apoptosis, as determined by real-time PCR, RT-PCR and ELISA analyses respectively. In human OA cartilage, the number of chondrocytes expressing pPERK, Ub, CHOP and pJNK positively correlated with cartilage degeneration and the number of C-CASP3-positive chondrocytes. XBP1 splicing and GRP78 expression in severe OA containing the greatest number of C-CASP3-positive chondrocytes were similar to the levels in mild OA, however, XBP1 splicing was higher in moderate OA than in mild and severe OA. Tunicamycin dose dependently increased CHOP expression and apoptosis of cultured chondrocytes. Although tunicamycin upregulated XBP1 splicing in cultured chondrocytes, its impact on XBP1 splicing was weakened at higher concentrations. In conclusion, the present results indicate that ER stress may contribute to chondrocyte apoptosis along with OA progression, which was closely associated with an enhanced apoptotic response and a reduced protective response by the cells.
In this study we investigated the cellular events that occur during the onset of chondrogenic differentiation during the repair of full-thickness defects of articular cartilage. The V-shaped full-thickness cartilage defects (width 0.7 or 1.5 mm; depth 0.8 mm; length 4 mm) were created in the femoral patellar groove of rats using a custom-built twin-blade device. The time course of the repair response in these cartilage defects was examined using a semi-quantitative histological grading scale. Cartilaginous repair responses failed to occur in the larger 1.5 mm defects, which was covered only by fibrous scar tissue. In contrast, hyaline-like articular cartilage was regenerated concomitantly with the repair of the subchondral bone by 4 weeks in smaller 0.7 mm width defects. Cells in the reparative regions were then characterized by immunohistochemistry and in situ hybridization. Undifferentiated mesenchymal cells migrate into the defects and fill the cavities within 4 days of their creation. The expression of PCNA, N-cadherin, and PTH/PTHrP receptors was induced in cells at the center of the defects, where type II collagen-positive polygonal-shaped cells also begin to appear at day 7. Marrow-derived mesenchymal cells acquire higher levels of proliferative activity in induced cartilage cavities after their initial migration and filling of the smaller 0.7 mm defects. During the regenerative repair of articular cartilage in the rat, there is a distinctive step that appears to be analogous to the precartilaginous condensation that is pivotal during chondrogenesis in development.
We have successfully developed a rat model containing identically sized full-thickness defects of articular cartilage that can undergo chondrogenic repair in a reproducible fashion.
Allelic loss on the chromosome 2 is associated with radiation-induced murine acute myeloid leukemia. However, the gene, which contributes mainly to the leukemogenesis has not yet been identified. Expecting any predisposition to acute myeloid leukemia, we performed a radiation leukemogenensis experiment with Pax6(Sey3H), one of the small eye mutants carrying a congenital hemizygosity of the chromosome 2 middle region. A deletion mapping of Pax6(Sey3H) with 50 STS markers indicated that the deleted segment extended between the 106.00 and 111.47 Mb site from the centromere with a length of 5.47 Mb. In the deleted segment, 6 known and 17 novel genes were located. Pax6(Sey3H) mutants that crossed back into C3H/He did not develop myeloid leukemia spontaneously, but they did when exposed to gamma-rays. The final incidence of myeloid leukemia in mutants (25.8%) was as high as that in normal sibs (21.4%). Survival curves of leukemia-bearing mutants shifted toward the left (p = 0.043 by the Log rank test). F1 hybrids of Pax6(Sey3H) with JF1 were less susceptible to radiation than Pax6(Sey3H) onto C3H/He in regard to survival (p = 0.003 and p < 0.00001 for mutants and normal sibs, respectively, by a test of the difference between two proportions). Congenital deletion of the 5.47 Mb segment at the middle region on chromosome 2 alone did not trigger myeloid stem cells to expand clonally in vivo; however, the deletion shortcut the latency of radiation-induced myeloid leukemia.
Background : Retinoic acid, a metabolic product of retinol, is essential for craniofacial morphogenesis. Transthyretin (TTR) is a plasma protein delivering retinol to tissues. We produced several transgenic mouse lines using the human mutant TTR ( hTTR
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.